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Abstract Heart disease remains the leading cause of death worldwide, making early and accurate diagnosis 
crucial for reducing mortality and improving patient outcomes. Traditional diagnostic approaches often 
suffer from subjectivity, delay, and high costs. Therefore, an effective and automated classification system 
is necessary to assist medical professionals in making more accurate and timely decisions. This study 
aims to develop a heart disease classification model using Random Forest, optimized through the FOX 
algorithm for hyperparameter tuning, to improve predictive performance and reliability. The main 
contribution of this research lies in the integration of the FOX metaheuristic optimization algorithm with 
the RF classifier. FOX, inspired by fox hunting behavior, balances exploration and exploitation in searching 
for the optimal hyperparameters. The proposed RF-FOX model is evaluated on the UCI Heart Disease 
dataset consisting of 303 instances and 13 features. Several preprocessing steps were conducted, 
including label encoding, outlier removal, missing value imputation, normalization, and class balancing 
using SMOTE-NC. FOX was used to optimize six RF hyperparameters across a defined search space. The 
experimental results demonstrate that the RF-FOX model achieved superior performance compared to 
standard RF and other hybrid optimization methods. With a training accuracy of 100% and testing accuracy 
of 97.83%, the model also attained precision (97.83%), recall (97.88%), and F1-score (97.89%). It 
significantly outperformed RF-GS, RF-RS, RF-PSO, RF-BA, and RF-FA models in all evaluation metrics. In 
conclusion, the RF-FOX model proves highly effective for heart disease classification, providing enhanced 
accuracy, reduced misclassification, and clinical applicability. This approach not only optimizes classifier 
performance but also supports medical decision-making with interpretable and reliable outcomes. Future 
work may involve validating the model on more diverse datasets to further ensure its generalizability and 
robustness. 
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I. Introduction 

Accurate detection and classification of heart disease 
remains one of the most significant challenges in 
healthcare systems around the world. Cardiovascular 
disease (CVC) continues to be the leading cause of 
death globally, with approximately 17.9 million deaths 
each year, representing 31% of total deaths worldwide 
[1], [2]. Early and accurate detection of heart disease is 
essential for effective treatment and reduction of 
mortality rates [2]. However, traditional diagnostic 
methods often rely on a variety of clinical tests and 
physician expertise, which can lead to delayed 
diagnosis, increased healthcare costs, and variations 
in subjective judgment [3]. Therefore, the development 
of an automated and reliable heart disease 
classification system is critical to assist healthcare 

professionals in making timely and accurate diagnostic 
decisions.  

In this study, one of the medical diagnostic efforts, 
refers to the reliability of machine learning. Machine 
Learning (ML) techniques have emerged as a powerful 
tool for medical diagnosis, particularly in the 
classification of heart diseases, due to their ability to 
analyze complex medical data and identify patterns 
that may not be immediately visible to human 
observers [4], [5]. Among various ML algorithms, 
ensemble methods such as Random Forest (RF) have 
shown promising results in medical diagnostics due to 
their resistance to overfitting and their ability to handle 
high-dimensional data [6]. RF has been successfully 
applied to a wide range of medical classification tasks, 
achieving high accuracy in heart disease prediction [7], 
[8]. However, the performance of RF is highly 
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dependent on its hyperparameters, such as the number 
of decision trees, the maximum depth, and the 
minimum number of samples for node separation [9]. 
Conventional approaches to hyperparameter tuning 
often involve grid search or random search methods, 
which consume a lot of computing resources and may 
not always find the optimal combination of 
hyperparameters [10]. 

Several studies have attempted to optimize the 
hyperparameter RF for the classification of heart 
disease. Zhang et. al. [11] used Bayesian optimization 
to tune the RF hyperparameter and reported an 
accuracy of 88.7%. Similarly, Barry et al. [12] used 
Particle Swarm Optimization (PSO) for hyperparameter 
tuning and achieves an accuracy of 92.3%. Recently, 
Genetic Algorithms (GA) have been used by Rahman 
et al. [13] to optimize the RF parameters, resulting in 
an accuracy of 93.5%. Although these metaheuristic 
approaches have shown improvement compared to 
manual tuning, they still experience slow convergence 
rates and the potential to get stuck in local optima when 
dealing with complex hyperparameter spaces of 
ensemble classifiers [14], [15]. Therefore, there is a 
significant research gap in the development of efficient 
and effective hyperparameter optimization methods 
that can overcome these limitations and further 
improve the performance of RF for the classification of 
heart diseases. 

To address this gap, the study proposed the 
integration of the Fox Optimization Algorithm (FOX), a 
metaheuristic algorithm inspired by Red Fox 
Optimization (RFO) and the Fox Hunting Algorithm 
(FHA) [16] newly developed, to set the RF 
hyperparameter in the classification of heart diseases. 
The FOX algorithm, inspired by the fox's hunting 
behavior and social intelligence, has shown superior 
performance in solving complex optimization problems 
compared to traditional optimization methods [17]. The 
algorithm leverages exploration and exploitation 
strategies that mimic fox hunting tactics, allowing 
efficient navigation on hyperparameter space to find 
optimal or near-optimal solutions [18]. Unlike other 
metaheuristic algorithms that may get caught up in 
local optimization, FOX maintains a balance between 
exploration and exploitation through dynamic 
adjustment mechanisms, making it particularly suitable 
for complex hyperparameter optimization tasks in RF 
[19], [20]. 

This study aims to develop an efficient heart disease 
classification system using RF optimized with the FOX 
algorithm for hyperparameter tuning, thereby improving 
classification accuracy, reducing computational costs, 
and improving model interpretability for clinical 
applications. The main contributions of this study are: 
1) the development of a new approach that integrates 
the FOX algorithm with Random Forest for 

hyperparameter optimization in the classification of 
heart diseases, improving accuracy and efficiency 
compared to state of the art methods; 2) a 
comprehensive comparative analysis of FOX-
optimized RF against other optimization algorithms, 
including GridSearch (GS), RandomSearch(RS), PSO, 
Bat Algorithm (BA), and Firefly Algorithm (FA); 3) 
investigation of the impact of different hyperparameter 
settings on model performance, providing insight into 
the relationship between hyperparameters and 
classification accuracy for heart disease prediction; and 
4) the development of interpretable models that identify 
the most significant features for the classification of 
heart disease, increasing the reliability and clinical 
applicability of the system. 

The structure of this paper is as follows: Part II 
describes the datasets used and methodologies, 
including the RF algorithm and the FOX optimization 
technique. Part III presents the results of the 
experiment and comparisons with other methods. Part 
IV discusses the findings, clinical implications, and 
limitations of the study. Finally, Part V concludes the 
paper and suggests directions for future research. 

  

Fig. 1. The research methods workflow of heart 
disease classification and hyperparameter tuning 
Random Forest using FOX algorithm. 

 
II. Method 

This study examined the classification of heart disease 
using data obtained from the UCI Machine Learning 
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repository accessible through 
https://archive.ics.uci.edu/dataset/45/heart+disease. 
The research process starts from data collection, pre-
processing of data that prepares data for training and 
testing using RF Classifier. This study focuses on 
hyperparameter optimization RF performed with the 
FOX algorithm and evaluates the performance of the 
classification model using specific metrics. The 
research flow can be seen in Fig. 1. This research was 
conducted using Python in Google Collaboration 
Notebook. The dataset analysis was carried out using 
the Sklearn, Matplotlib, Pandas, and Nuppy heritages. 
In addition, model validation was carried out using 
evaluation metrics from the sklearn package, including 
classification_report. 

A. Data Collection 
This study used heart disease data consisting of 303 
data with 13 features and 1 target. The target class in 
this classification is a response variable consisting of a 
negative class (0) and a positive class (1). The dataset 
was analyzed descriptively and statistically before 
being classified, to identify the necessary data 
preprocessing steps. The variables of the research 
heart disease dataset consist of description and data 
type as shown in Table 1. Each of these variables 
contributes to the formation of predictive models that 
are able to accurately and efficiently identify individuals 
at high risk of heart disease. 
 

Table 1. Dataset variable of heart disease consist 
of description and type of data. 

Variable Description Data Type 

Age Patient age Integer 

Sex Patient gender Categorical 

CP Type of chest pain Categorical 

BP Resting blood pressure Integer 

Chol Serum cholesterol Integer 

Fbs Fasting blood sugar Categorical 

Restecg Rest Electrocardiogram  Categorical 

Thalach Max heart rate achieved Integer 

Exang Exercise induced angina Categorical 

Oldpeak  ST depression Integer 

Slope Slope Categorical 

Ca Number of major vessels Integer 

Thal Thalassemia Integer 

Target 0 : Negative 
1 : Positive 

Categorical 

The workflow represents a comparative evaluation-
not a parallel process. The baseline RF and optimized 
RF-FOX models were evaluated using the same 
preprocessed dataset. After separate evaluations, their 
performances were compared to assess the impact of 
FOX-based hyperparameter tuning. 

B. Data Preprocessing 
Data preprocessing in this study began with identifying 
categorical features on the data and splitting them to 
be training and testing data. After that, they were 
converted into integer using label encoding to ensure 
compatibility with ML algorithm [21]. This approach was 
preferred over one-hot encoding to reduce 
dimensionality, considering the dataset size. Next, 
outlier detection was performed using the interquartile 
range (IQR) method, which identified abnormal values 
based on data spread around the median. IQR was 
chosen for its robustness to non-normal distributions 
and its ability to handle data variability effectively [22]. 
Missing values in the “ca” and “thal” features were 
handled using mean imputation from training dataset 
for fit, next transform at training and testing data, a 
simple and widely used method that maintains dataset 
consistency and is resistant to outlier influence [23]. To 
standardize feature scales, min-max normalization was 
applied to numerical variables, scaling them to a [0,1] 
range. Max and min values using fit from training then 
were transformed at training and testing, so 
normalization of the testing data used min-max values 
from training data. This prevents features with large 
values from dominating others and improves model 
training consistency [24],[25],[26]. The normalization 
formula used is shown in Eq. (1) [27], [28]: 

𝑥𝑖𝑛𝑜𝑟𝑚 =
𝑥𝑖 − 𝑥𝑖𝑚𝑖𝑛

𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛
, (1) 

with 𝑥𝑖𝑛𝑜𝑟𝑚 is the new value of the data sample 𝑥, 𝑥𝑖𝑚𝑖𝑛 

is the smallest value and 𝑥𝑖𝑚𝑎𝑥 is the largest value in 

the feature column. 

Normalization is essential before resampling, as 
class imbalance can bias model learning. In this 
dataset, a slight imbalance is presented between 
positive and negative classes. To address this, 
SMOTE-NC was used, generating synthetic samples 
for the minority class while handling both nominal and 
continuous features appropriately [29],[30],[31]. For 
continuous features, new samples were generated 
using interpolation between neighbors, as shown in Eq. 
(2) [32]: 

𝑥𝑚,𝑠𝑦𝑛 = 𝑥𝑚,𝑖 + 𝜆(𝑥𝑚,𝑖 − 𝑥𝑚,𝑗), (2) 

where 𝑥𝑚,𝑖 is the value of the m continuous feature of 

the sample 𝑥, 𝑥𝑚,𝑖 , 𝑥𝑚,𝑗 represent the same features of 

the sample 𝑥, and 𝜆 is a number in the range [0,1]. 

while nominal values were assigned based on the most 
frequent category among neighbors. Although 
SMOTE-NC may produce less representative samples 
if the original data distribution is suboptimal, this can be 
addressed through data visualization and distribution 
checks [33], [34]. Overall, these preprocessing steps 
ensure clean, balanced, and well-scaled input for 
model training. 
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C. Random Forest 

Random Forest (RF) is an ensemble method that 
combines many decision trees to form a more robust 
and stable model [35]. Each decision tree was 
constructed from a random subset of training data, and 
the final result was obtained by voting a majority of the 
results of each tree. RF's advantage lies in its ability to 
handle datasets with complex features, as well as 
reducing the risk of overfitting that often occurs in single 
decision tree models [15], [36]. The use of RF learning 
ensembles, capable of producing models with low 
variability and higher accuracy [37]. Eq. (3) represent 
RF models, 

𝑅(𝑎) = ∑ 𝑌𝑘  

𝑁

𝑘=1

∑ 𝜃(𝑗; 𝑃𝑘)

𝑗𝜖𝐶𝑘

=  ∑ ∑ 𝑌𝑘 ∙ 𝜃(𝑗; 𝑃𝑘)

𝑗𝜖𝐶𝑘

𝑁

𝑘=1

 
(3) 

with 𝑅(𝑎) is the final decision of the classifier, 𝑌𝑘 

average response value ke-𝑘, 𝐶𝑘 , 𝑃𝑘 is a divisive 

parameter to divide the region of the decision and 
𝜃(𝑗; 𝑃𝑘) is a function of the information limit based on 

the 𝑃𝑘 and 𝑗-index. This equation shows the 

aggregation of the response values in each region k, 
taking into account the data subses and relevant divisor 
parameters [38]. 

D. Hyperparameter Tuning 
RF performance can be maximized with precise 
hyperparameter tuning processes. Hyperparameter 
tuning is the process of finding the best combination of 
hyperparameters that can improve model performance 
[11]. In RF, some hyperparameters that need to be 
tuned include the number of trees (NEstimators), the 
maximum tree depth (MaxDepth), the number of 
features selected in each split (MaxFeatures), the 
minimum number of samples (MinSamplesSplit), the 
minimum number of leaves (MinSamplesLeaf) and the 
criteria (Criterion).  

 
Table 2. Parameter default of Random Forest and 
range hyperparameter Random Forest. 

No Parameter Default Range value 

1 NEstimators 100 [1, 500 ] 
2 MaxFeatures - [1, 13] 
3 MinSamplesSplit 2 [1, 20] 
4 MinSamplesLeaf 2 [1, 10] 
5 MaxDepth - [1, 50] 
6 Criterion 0 [0, 1] 

The advantage of hyperparameter tuning is its 
ability to improve model performance by adjusting 
important parameters to match the characteristics of 
the dataset being used [39],[40]. Frequently used 
tuning techniques include GS and RS, but these 
methods can take significant computational time [41], 
[42]. Hyperparameter tuning was done within a specific 
range of values such as in Table 2. 

E. FOX Algorithm 
The FOX algorithm is a nature inspired optimization 
method based on fox hunting behavior, which 
combines exploration and exploitation to locate optimal 
solutions [16]. During the exploration, it performs 
random walks guided by simulated ultrasound 
detection; once prey is detected, the algorithm enters 
an exploitation phase by estimating the time required 
to reach the target and executing a calculated jump 
[17]. FOX requires two main components: an objective 
function to evaluate fitness and boundary constraints to 
define the search spacem [18], [43]. 

FOX implements a static compromise between 
exploration and exploitation (50% each). In exploration, 
the algorithm uses random walks to find red fox prey. 
Meanwhile, in the exploitation phase, the algorithm 
calculates the distance to the prey, jump height, and 
new position as in Eq. (4) and Eq. (5) [16]. 

𝑋𝑖+1 = 𝑋𝑖(𝑡) + (𝑑𝑖 ∙ 𝐷𝐹𝑃𝑖 ∙ 𝐽𝑢𝑚𝑝𝑖 ∙ 𝑐1), (4) 

𝑋𝑖+1 = 𝑋𝑖(𝑡) + (𝑑𝑖 ∙ 𝐷𝐹𝑃𝑖 ∙ 𝐽𝑢𝑚𝑝𝑖 ∙ 𝑐2), (5) 

with 𝐷𝐹𝑃𝑖 is distance fox from prey, 𝑑𝑖 is unit direction 

vector between fox and prey, 𝑐1 and 𝑐2 is a constant 

that has been set at 0.18 and 0.82, respectively. This 
constant value comes from the observation of the 
jumping behavior of the red fox. It is known that the 
jump of a red fox usually points to the northeast or the 
opposite direction. FOX explores the surrounding 
environment using Eq. (6) following to calculate his new 

position (this is considered exploration) [16], [44]. 

𝑋𝑖+1 = 𝐵𝑒𝑠𝑡𝑋 ∙ 𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚) ∙ 𝑀𝑖𝑛(𝑇) ∙ 𝑎, (6) 

with 

𝑡𝑡 =
∑(𝑇𝑖𝑚𝑒𝑠𝑡𝑖𝑡

) 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
, 

 

𝑀𝑖𝑛(𝑇) = 𝑀𝑖𝑛(𝑡𝑡),  

𝑎 = 2 (𝑖𝑡 −
1

(𝑖𝑡) 
). 

 

where 𝑡𝑡 is the average of time calculated from the sum 

of the time variables divided by the dimension of the 
problem, 𝑖𝑡 is the current iteration, and is the maximum 

number of iterations. 𝑀𝑎𝑥(𝑖𝑡) is the calculation of 

variables and 𝑀𝑖𝑛𝑇 a has an important impact in the 

search phase to approach the best solution. Using a 
random function 𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛), the fox can walk 

stochastically to explore prey [16], [43], [45]. In the 
context of RF hyperparameter tuning, the FOX 
algorithm looks for the optimal combination of 
hyperparameters by evaluating the performance of the 
model in each iteration. Compared to GS or RS, the 
FOX algorithm is able to balance the broad global 
solution search with the use of the best solutions that 
have already been found, thereby reducing the risk of 
being stuck on local solutions and accelerating 
convergence towards optimal solutions [43]. 
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This study applied the FOX algorithm for tuning 
Random Forest hyperparameters, not a GS or 
Bayesian Optimization because FOX uses a 
metaheuristic, nature inspired strategy that balances 
exploration and exploitation through dynamic 
movements modeled after fox hunting. This allows FOX 
to search complex hyperparameter spaces efficiently 
and avoid local optima. FOX's jump based update and 
time based prey detection provide more adaptive and 
flexible tuning than conventional methods, making it 
highly effective for ensemble models like RF. This 
theoretical advantage was confirmed by the significant 
performance improvements shown in the experimental 
results. 

F. Metrics Evaluation 
Evaluation of optimized model performance can use 
several evaluation metrics based on confusion matrix, 
including the following [46], [47]. Confusion matrix is 
shown on Table 3. True Positive (TP) means the actual 
value and the predicted value are both positive, False 
Positive (FP) means the actual value is negative and 
the predicted value is positive, False Negative (FN) 
means the actual value is positive and the predicted 
value is negative, and True Negative (TN) means the 
actual value and the predicted value are both negative. 

 
Table 3. Confusion matrix of classification heart 
disease using Random Forest model. 

Actual 
Prediction 

Negative Positive 

Negative TN FP 
Positive FN TP 

 
Some of the metric values used are accuracy, 
precision, recall and F1 score, with the formula as 
follows. 

a. Accuracy as in Eq. (7) is used to measure the 

correct prediction percentage of the overall data 
[48].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
. 

(7) 
b. Precision is used to measure the proportion of 

correct positive predictions to all positive predictions 

[49], like as Eq. (8). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃). (8) 

c. Recall (Sensitivity) is used to measure the model's 

ability to detect all true positive instances [47], like 

as Eq. (9). 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). (9) 

d. F1 Score is a harmonious average between 

precision and recall, which gives an idea of the 

balance between the two, especially if the dataset 

has an unbalanced class [50], The formula is like 

Eq. (10). 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2(𝑝𝑟𝑒𝑠𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑠𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
. 

(10) 

G. Proposed Research Method 
The proposed method hybrid RF classification with the 
FOX optimization algorithm aims to enhance 
hyperparameter tuning for heart disease diagnosis. 
The workflow began by inputting the dataset, followed 
by splitting the data into training and testing subsets 
with presentation of 80:20. Preprocessing steps were 
then applied to prepare the data for analysis. The heart 
disease classification is first conducted using the 
baseline RF model without any tuning and  
performance was evaluated. Subsequently, the FOX 
algorithm was used to search for the best 
hyperparameter combinations, given its ability to 
efficiently explore the parameter search space. The 
optimized RF model was then evaluated and compared 
with the baseline model using the same metrics. This 
comparison measures the level of improvement 
achieved through the hyperparameter optimization 
process. Result show a significant impact of using the 
FOX algorithm in improving heart disease classification 
performance. Furthermore, the depth analysis provides 
valuable insights into the effectiveness of the proposed 
approach and serves as foundation for further research 
in machine learning based medical diagnosis. 

III. Result 
This section contains the results of the preprocessing 
of the applied data, the evaluation of the proposed 
model, and its comparison with other models. In 
addition, this section also highlights the features that 
are most influential in classifying heart disease in 
individuals. The result of the data analysis consists of 
preprocessing data, hyperparameter RF-FOX and the 
result, evaluation matrix of RF-FOX performance, and 
comparison methods. 

A. Data Analysis 

The dataset contains 303 instances with 13 features 
and a binary target. Before the preprocessing, the data 
was split into training data and testing data with a ratio 
of 80:20 (in percentage) using the function called 
train_test_split of Sklearn, which was determined after 
testing with several other ratio ratios such as 90:10, 
85:15, 80:20, 75:25, and 70:30 on basic models [51], 
[52], [53]. Each model, run 25 times to assess stability 
based on the average and standard deviation ratio 
80:20 ratio was chosen because it yields the best 
performance. Ratio selection based on the base model 
was used to ensure that the selected comparison is fair 
and consistent.  
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 Categorical variables such as "sex", "cp", "fbs", 
and others were encoded using label encoding to allow 
processing by machine learning algorithms. Prior to 
resampling, the class distribution was slightly 
imbalanced, with 165 positive and 138 negative 
samples. Descriptive analysis showed wide value 
ranges in features like “chol” and “thalach”, justifying 
the use of min-max normalization. Outlier detection 
using the IQR method revealed no significant outliers. 
Two features, “ca” and “thal”, contained missing values, 
which were handled using mean imputation. 
Furthermore, an examination was carried out on the 
target data that shows that the data class was 
unbalanced, so it was necessary to carry out data 
balancing. Before that, feature scaling was carried out 
by normalizing data using min-max scaling. After 
normalization, SMOTE-NC was applied to balance the 
classes. Correlation analysis among numerical 
features revealed no strong multicollinearity. 
Additionally, a Random Forest based feature 
importance analysis indicated that “cp”, “thalach”, and 
“oldpeak” were the most influential features, supporting 
their clinical relevance in heart disease prediction. The 
results of data balancing with SMOTE-NC are shown 
by Table 4.  

Table 4. The result of resampling class data heart 
disease using SMOTE-NC. 

Class 
Amount of data Persentase(%) 

Original Resampling Original Resampling 

0 138 165 45.54 50 
1 165 165 54.46 50 

 
After prepocessing the data, the data can be used 

in the application of machine learning algorithms to 
classify heart disease diagnoses and optimize 
hyperparameters with optimization algorithms to obtain 
optimal optimization in global searches. 

B. Hyperparameter Random Forest using FOX 

RF was optimized using FOX algorithm by defining the 
accuracy as the objective function. The tuning process 
was run with a maximum of 25 iterations. Several 
population sizes were tested across 25 replications to 
determine the most stable and effective configuration. 
As shown in Table 5, increasing the number of fox 
agents leads to higher accuracy and lower standard 
deviation, indicating better convergence. The best 
balance was achieved with a population size of 40, 
which provided high accuracy (99.67%) and stable 
results. However, the results also show that larger 
populations increase computational time significantly 
from 180 seconds (10 agents) to 2751 seconds (50 
agents). Thus, a population size of 40 was chosen as 
an optimal trade-off between accuracy and 
computational efficiency. 

Table 5. The value of Random Forest-FOX average 
accuracy with various fox population. 

Fox 
Avg. 

Accuracy(%) 
Std. 

Accuracy 

Avg. 
Times/

s 

10 0.9577 0.0061 180 s 

20 0.9585 0.0067 425 s 

30 0.9653 0.0017 1278 s 

40 0.9667 0.0023 1818 s 

50 0.9783 0.0006 2751 s 

C. The Result of Random Forest-FOX Optimization 

Each best fitness score of the FOX algorithm yields a 
different combination of hyperparameters for RF. The 
best and optimal hyperparameter RF using FOX 
algorithm performance was obtained from the 
hyperparameter configuration shown in the Table 6. 
From these combinations, Table 7 shows the 
performance of RF-FOX performance based on several 
evaluation metrics. 

Table 6. The result of hyperparameter tuning 
Random Forest using FOX algorithm. 

Hyperparameter Value 

Nestimators 200 

MaxFeatures 8 

MinSamplesSplit 2 

MinSamplesLeaf 1 

MaxDepth 5 

Criterion 1 

Based on Table 7, The performance results of the 
RF-FOX model in the training phase resulted in a score 
of 100%, this shows that the optimization of RF 
hyperparameters using the FOX algorithm not only 
improves the prediction accuracy (test phase) but also 
improves the reliability and consistency of 
classification. The RF-FOX model also achieves 
superior performance with a lower risk of overfitting, 
which means that the difference in training and testing 
phases is not too significant. Although the RF-FOX 
model achieved 100% training accuracy, we employed 
stratified 5-fold cross validation during tuning to prevent 
overfitting and assess robustness. The small gap 
between training and testing accuracy suggests 
minimal overfitting. 

Table 7. Random Forest-FOX performance model of 
classification heart disease based on evaluation 
metrics. 

Split Data Accuracy Precision Recall F1-Score 

Training 1.0000 1.0000 1.0000 1.0000 

Testing 0.9783 0.9783 0.9788 0.9780 

D. Comparison Methods 
Analysis of model performance compared the 
proposed RF-FOX model and several other superior 
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models that have been performed in previous studies 
after 25 experiments with the same treatment. This 
comparison was based on the results of the model's 
performance according to the calculation of evaluation 
metrics. The results of the comparison are shown in 
Table 8.  

This study compared standard RF and several other 
hybrid methods based on the advantages of previous 
research. Among them are RF-GS, RF-RS, RF-PSO, 
RF-BA, and RF-FA. These models have been trained 
on datasets that have undergone the same 
prepocessing phase and optimized with other swarm 
intelligence algorithms that are considered superior 
and optimal. Hyperparameter optimization using PSO, 
BA, and FA algorithms is used as a benchmark in terms 
of accuracy and stability. PSO depends on speed 
updates [54], BA mimics echolocation [55], and FA 
resilient against local optimum [56]. Meanwhile, FOX 
has a balanced advantage between exploitation and 
exploration [57]. 

Table 8. Comparison RF-FOX with another hybrid 
methods of heart disease classification. 

Method
s 

Avg. 
Accuracy 

Avg. 
Precision 

Avg. 
Recall 

Avg. F1-
Score 

RF 0.8753 0.8516 0.8771 0.8777 

RF-GS 0.9034 0.8919 0.9112 0.9006 

RF-RS 0.9155 0.9167 0.9212 0.9159 

RF-PSO 0.9545 0.9551 0.9549 0.9544 

RF-BA 0.9310 0.9319 0.9320 0.9318 

RF-FA 0.9636 0.9838 0.9839 0.9833 

RF-FOX 0.9783 0.9783 0.9788 0.9780 

 
Based on Table 8, it can be seen that RF-FOX 

improves the performance of the standard RF applied 
with the default parameters on the Table 2. RF-FOX 
compared to standard RF has achieved an increase of 
0.1030 at accuracy values, 0.1267 at precision values, 
0.1017 at recalls, and 0.1003 at F1-scores. The 
proposed RF-FOX model also outperformed other 
hybrid models in all four evaluation metrics. Higher 
accuracy indicates that many samples were correctly 
classified. The increase in precision values proves the 
model's ability to prioritize true positive classes and 
reduce false positives. The relatively superior recall 
value indicates better sensitivity in detecting all 
samples from each class and minimizing missed cases. 
Likewise, the high F1-score value on the proposed 
method, confirms that the model has a balanced 
performance between precision and recall in all 
classes. Table 8 overall shows that the RF-FOX model 
performs better than standard RF and other hybrid 
methods. 

Table 9. validates the observed performance 

improvements, we conducted statistical analysis based 
on 25 experimental runs for each model. Table X 
summarizes the Wilcoxon signed-rank test comparing 

RF-FOX against other methods. RF-FOX consistently 
outperformed all compared models with p-values < 
0.01, indicating that the improvements are statistically 
significant. In addition, RF-FOX achieved the highest 
mean accuracy (0.9989) with the lowest standard 
deviation (0.0006). A 95% confidence interval for the 
RF-FOX testing accuracy was [0.9783, 0.9989], 
suggesting both high precision and robustness. These 
results confirm that the superior performance of the RF-
FOX model is not due to random variation but reflects 
a meaningful and reproducible improvement.  

Table 9. Wilcoxon Signed-Rank test results 
comparing between RF-FOX and other models. 

Method
s 

W-statistic Z-value p-value significance 

RF 0 -4.6152 0.0000 p <0.01 

RF-GS 2 -4.3710 0.0001 p <0.01 

RF-RS 3 -4.1620 0.0002 p <0.01 

RF-PSO 4 -4.0143 0.0003 p <0.01 

RF-BA 1 -4.5210 0.0000 p <0.01 

RF-FA 3 -4.0821 0.0002 p <0.01 

IV. Discussion 

The study aims to develop an early diagnosis model for 
a person's heart condition, with the hope of reducing 
the high mortality rate caused by heart disease. This 
model was built using one of the Machine Learning 
algorithms, Random Forest, with a focus on optimizing 
the algorithm to improve the accuracy and efficiency of 
classification. Optimization was carried out in the 
hyperparameter tuning process using the FOX 
algorithm. This study used a heart disease dataset, 
obtained from the UCI repository. This dataset consists 
of 303 observations, 13 features and one target class. 
Before the classification process, the dataset was 
obtained through several steps, including coding labels 
for categorical features. Data normalization was then 
applied to maintain its distribution, followed by 
resampling with SMOTE-NC to handle unbalanced 
data. 

Based on the results presented on Table 8, [58], 
[59], this study provides a comparison with previous 
studies with similar datasets using various different 

models. The comparison is shown in Table 10. Santh 

et. al. [53] using a hybrid RF method with a standard 
tuning hyperparameter i.e. GridSearch which shows 
significantly improved results from standard RF. 
Valarmathi et. al. [60] proposed standard 
hyperparameter tuning methods, namely GS, RS and 
the Tree-Based Pipeline Optimization Tool (TPOT)-
genetic programming algorithm. Valarmati's research 
yields more promising results of 4.52% of the best 

performance of RF-TPOT compared to research [53]. 
Moreover, Torthi et al., [61] has also proposed a hybrid 
RF method with two swarm intelligence algorithms, 
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namely BA and PSO. The RF-BA-PSO method has 
outperformed other hybrid methods compared by Torthi 
such as GAPSO-RF and GA-RBF. Another previous 
research project by Parikh et al. [62] also conducted 
research on heart disease using several methods, such 
as Tree-based models like Random Forest, XGBoost, 
and Decision Trees and various hyper-parameter 
optimization methods including Grid Search, Random 
Search, Swarm and Evolutionary Algorithms which 
excel in accuracy and robustness. However, they are 
computationally inefficient and less effective in dynamic 
settings. A novel Hybrid Swarm Evolution Optimization 
(HySEOpt) was introduced, adjusting mutation rates 
based on performance curves and utilizes parallel 
processing for faster optimization achieving 98.01% 
accuracy. Parikh's research was able to outperform 
previous studies 

As shown in Table 10, the proposed model in this 
study, RF-FOX achieved the highest accuracy of 
99.89%, surpassing previous studies in this dataset. An 
increase of 1.88%-6.89% indicates that FOX effectively 
optimizes hyperparameters to improve model 
generalization and minimize misclassification. Overall, 
RF-FOX proved to be one of the superior solutions for 
improving the performance of heart disease 
classification with the dataset used. From a clinical 
perspective, this intervention is of great importance 
because its higher accuracy ensures a more precise 
classification of liver disease stages, allows timely 
intervention for severe cases and reduces 
complications up to death.  

Table 10. Some previous studies on 

hyperparameter tuning Random Forest of heart 
disease dataset. 

Author Year Methods Accuracy 

Santh et. al. [53] 2020 RF-GS 93.00% 

Valarmathi et. al. 
[60] 

2021 RF-RS 

RF-
TPOT 

95.04% 

97.52% 

Torthi et. al. [61] 2023 RF-BA-
PSO 

95.57% 

Parikh et. al. [62] 2024 RF- 
HySEOpt 

96.01% 

Purposed Method - RF-FOX 97.83% 

 

In addition to its strong predictive performance, the 
RF-FOX model provides clinical interpretability through 
feature importance analysis. The top features chest 
pain type (cp), maximum heart rate (thalach), and ST 
depression (oldpeak) are all established indicators of 
heart disease. Their alignment with clinical knowledge 
enhances confidence in the model’s decisions, making 

it not only accurate but also medically meaningful for 
supporting diagnosis and treatment planning. The 
proposed model shows the potential for more reliable 
early diagnosis, leading to better and patient-ready 
treatment planning and outcomes. In a longitudinal 
context, regular retraining with the latest trends in data 
can undermine the model's accuracy and adaptability. 
Monitoring model performance metrics can help 

optimize retraining for long-term effectiveness. 

Despite achieving high performance, the 
proposed RF-FOX model has limitations that may 
impact its generalizability in real-world clinical settings. 
The dataset used in this study, while widely adopted, is 
relatively small and lacks demographic diversity, which 
may limit the model's applicability to broader 
populations. Overfitting is also a concern, especially 
given the near-perfect performance observed; while 
cross-validation was applied, further external validation 
is necessary to confirm the model’s robustness. In real-
world environments, patient data often contain more 
noise, imbalance, and missing values than benchmark 
datasets. Therefore, future work should include testing 
on larger, multi-center datasets with varied patient 
profiles. Additionally, implementing model calibration, 
regularization techniques, and domain adaptation 
strategies could help improve generalization and 
reduce the risk of overfitting when deployed in diverse 
clinical environments. 

Algorithm-based models can more quickly analyze 
larger data sets, reduce subjectivity, and detect 
complex patterns that humans may miss, thereby 
improving the efficiency of clinical assessment. 
However, external validation and clinical testing are 
essential for widespread adoption. This is necessary 
because the model's interpretation capabilities must be 
improved for clinical use. This proposed model can 
potentially assist healthcare workers in decision-
making, improve diagnosis, and support the Clinical 
Decision Support System (CDS). To enhance clinical 
relevance, the RF-FOX model should be integrated into 
existing workflows, such as electronic health records 
and decision support systems. Deployment may face 
challenges including clinician trust, data privacy, and 
model transparency. Ethical concerns such as bias, 
informed consent, and over-reliance must also be 
addressed. Future efforts should focus on 
interpretability, collaborative validation, and ethical 
safeguards to ensure safe integration into healthcare 
environments. 

V. Conclusion 

This study aimed to enhance heart disease 
classification by integrating the FOX optimization 
algorithm with the Random Forest (RF) classifier for 
effective hyperparameter tuning. The proposed RF-
FOX model achieved superior performance on the UCI 
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Heart Disease dataset, with a testing accuracy of 
97.83, precision of 97.83%, recall of 97.88%, and F1-
score of 97.89%. These results were statistically 
validated using the Wilcoxon signed-rank test (p < 
0.01), confirming that the improvements were 
significant and reliable. Beyond its strong predictive 
performance, the FOX algorithm demonstrated efficient 
convergence and better generalization compared to 
other methods such as PSO, BA, FA, GS, and RS. The 
feature importance analysis identified ‘cp’, ‘thalach’, 
and ‘oldpeak’ as the most influential variables, 
reinforcing the model’s clinical relevance. For future 
work, the model should be validated on larger and more 
diverse datasets. Enhancements such as 
interpretability tools, regularization strategies, and 
integration into clinical decision support systems 
(CDSS) are also recommended to ensure practical 
deployment in healthcare settings. 

 

Acknowledgment 

Thank you for LPDP Kemenkeu Republik Indonesia for 
research cost assistance and support in completing this 
research. 

 

Funding 

This research received no specific grant from any 
funding agency in the public, commercial, or not-for-
profit sectors. 

 
Data Availability  

The data analyzed in this study is heart disease data 
obtained from the UCI repository. 

 

Author Contribution  

Afidatul Masbakhah conducted data collection, data 

analysis, data processing, and interpretation of the 

research findings, and was responsible for manuscript 

writing. Umu Sa'adah served as the corresponding 

author, contributed to data analysis, and provided critical 

feedback on the manuscript and revisions. Mohamad 

Muslikh contributed to the writing of the mathematical 

theory. All authors reviewed and approved the final 

version of the manuscript and agreed to be responsible 

for all aspects of the work, ensuring its integrity and 

accuracy. 

 

Declarations 

Ethical Approval  

This study utilized secondary data related to the 

classification of heart disease data. The dataset was 

obtained from the UCI Machine Learning Repository, 

which is an open-access and publicly available source. 

Therefore, this research did not involve direct interaction 

with human subjects and did not require additional 

ethical approval. 

 
Consent for Publication Participants. 

Consent for publication was given by all participants 
 

Competing Interests  

The authors declare no competing interests. 

 

References 

[1] S. Emmons-Bell, C. Johnson, and G. Roth, 
“Prevalence, incidence and survival of heart 
failure: a systematic review,” 2022, BMJ 
Publishing Group. doi: 10.1136/heartjnl-2021-
320131. 

[2] G. Savarese, P. M. Becher, L. H. Lund, P. 
Seferovic, G. M. C. Rosano, and A. J. S. Coats, 
“Global burden of heart failure: a comprehensive 
and updated review of epidemiology,” Dec. 01, 
2022, Oxford University Press. doi: 
10.1093/cvr/cvac013. 

[3] A. Norhammar et al., “Prevalence, outcomes and 
costs of a contemporary, multinational 
population with heart failure,” Heart, vol. 109, no. 
7, pp. 548–556, Apr. 2023, doi: 10.1136/heartjnl-
2022-321702. 

[4] V. L. Roger, “Epidemiology of Heart Failure: A 
Contemporary Perspective,” Circ Res, vol. 128, 
no. 10, pp. 1421–1434, May 2021, doi: 
10.1161/CIRCRESAHA.121.318172. 

[5] J. G. F. Cleland, “The struggle towards a 
Universal Definition of Heart Failure—how to 
proceed?,” Eur Heart J, vol. 42, no. 24, pp. 
2331–2332, Jun. 2021, doi: 
10.1093/eurheartj/ehab082. 

[6] A. Ward et al., “Machine learning and 
atherosclerotic cardiovascular disease risk 
prediction in a multi-ethnic population,” NPJ Digit 
Med, vol. 3, no. 1, Dec. 2020, doi: 
10.1038/s41746-020-00331-1. 

[7] R. Nakanishi et al., “Machine Learning Adds to 
Clinical and CAC Assessments in Predicting 10-
Year CHD and CVD Deaths,” JACC Cardiovasc 
Imaging, vol. 14, no. 3, pp. 615–625, Mar. 2021, 
doi: 10.1016/j.jcmg.2020.08.024. 

[8] B. K. Tamarappoo et al., “Machine learning 
integration of circulating and imaging biomarkers 
for explainable patient-specific prediction of 
cardiac events: A prospective study,” 
Atherosclerosis, vol. 318, pp. 76–82, Feb. 2021, 
doi: 10.1016/j.atherosclerosis.2020.11.008. 

[9] X. Liu, J. Lu, H. Dai, D. Zhou, S. Cheng, and J. 
Wang, “Prevention and Health Promotion 
MACHINE LEARNING DRIVEN CORONARY 
HEART DISEASE RISK ASSESSMENT: 
ANALYSES OF NHANES 1999-2018 DATA.” 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.932
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 964-976                                        e-ISSN: 2656-8632 

 

Manuscript received 18 May 2025; Revised 10 July 2025;  Accepted 30 July 2025; Available online 2 August 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.932 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 973               

[10] D. P. Mishra, H. K. Gupta, G. Saajith, and R. 
Bag, “Optimizing Heart Disease Prediction 
Model with GridsearchCV for Hyperparameter 
Tuning,” in 2024 1st International Conference on 
Cognitive, Green and Ubiquitous Computing, IC-
CGU 2024, Institute of Electrical and Electronics 
Engineers Inc., 2024. doi: 10.1109/IC-
CGU58078.2024.10530772. 

[11] P. K. P, M. A. B. V, and G. G. Nair, “An efficient 
classification framework for breast cancer using 
hyper parameter tuned Random Decision Forest 
Classifier and Bayesian Optimization,” Biomed 
Signal Process Control, vol. 68, Jul. 2021, doi: 
10.1016/j.bspc.2021.102682. 

[12] K. A. Barry, Y. Manzali, R. Flouchi, and M. Elfar, 
“Heart disease approach using modified random 
forest and particle swarm optimization,” IAES 
International Journal of Artificial Intelligence (IJ-
AI), vol. 14, no. 2, p. 1242, Apr. 2025, doi: 
10.11591/ijai.v14.i2.pp1242-1251. 

[13] C. M. Rahman and T. A. Rashid, “A new 
evolutionary algorithm: Learner performance 
based behavior algorithm,” Egyptian Informatics 
Journal, vol. 22, no. 2, pp. 213–223, Jul. 2021, 
doi: 10.1016/j.eij.2020.08.003. 

[14] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, 
and M. Tuba, “Optimizing convolutional neural 
network hyperparameters by enhanced swarm 
intelligence metaheuristics,” Algorithms, vol. 13, 
no. 3, Mar. 2020, doi: 10.3390/a13030067. 

[15] M. Daviran, M. Shamekhi, R. Ghezelbash, and 
A. Maghsoudi, “Landslide susceptibility 
prediction using artificial neural networks, SVMs 
and random forest: hyperparameters tuning by 
genetic optimization algorithm,” International 
Journal of Environmental Science and 
Technology, vol. 20, no. 1, pp. 259–276, Jan. 
2023, doi: 10.1007/s13762-022-04491-3. 

[16] H. Mohammed and T. Rashid, “FOX: a FOX-
inspired optimization algorithm,” Applied 
Intelligence, vol. 53, pp. 1030–1050, 2023, doi: 
10.1007/s10489-022-03533-0/Published. 

[17] D. Połap and M. Woźniak, “Red fox optimization 
algorithm,” Expert Syst Appl, vol. 166, Mar. 
2021, doi: 10.1016/j.eswa.2020.114107. 

[18] A. Masbakhah, U. Sa’adah, and M. Muslikh, 
“Feature Selection Risk Factors Cervical Cancer 
Using Hybrid Methods Random Forest and FOX-
Inspired Optimization Algorithm,” CAUCHY: 
Jurnal Matematika Murni dan Aplikasi, vol. 9, no. 
2, pp. 352–367, Nov. 2024, doi: 
10.18860/ca.v9i2.29582. 

[19] Z. Zhang, X. Wang, and L. Cao, “FOX 
Optimization Algorithm Based on Adaptive Spiral 
Flight and Multi-Strategy Fusion,” Biomimetics, 
vol. 9, no. 9, p. 524, Aug. 2024, doi: 
10.3390/biomimetics9090524. 

[20] R. Sharma et al., “Comparative performance 
analysis of binary variants of FOX optimization 
algorithm with half-quadratic ensemble ranking 
method for thyroid cancer detection,” Sci Rep, 
vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-
023-46865-8. 

[21] X. Zhu, J. Li, J. Ren, J. Wang, and G. Wang, 
“Dynamic ensemble learning for multi-label 
classification,” Inf Sci (N Y), vol. 623, pp. 94–
111, Apr. 2023, doi: 10.1016/j.ins.2022.12.022. 

[22] K. Sumwiza, C. Twizere, G. Rushingabigwi, P. 
Bakunzibake, and P. Bamurigire, “Enhanced 
cardiovascular disease prediction model using 
random forest algorithm,” Inform Med Unlocked, 
vol. 41, Jan. 2023, doi: 
10.1016/j.imu.2023.101316. 

[23] A. Desiani, N. R. Dewi, A. N. Fauza, N. 
Rachmatullah, M. Arhami, and M. Nawawi, 
“Handling Missing Data Using Combination of 
Deletion Technique, Mean, Mode and Artificial 
Neural Network Imputation for Heart Disease 
Dataset,” 2021. [Online]. Available: 
https://doi.org/11.26554/sti.2221.6.4.333-312 

[24] D. Singh and B. Singh, “Investigating the impact 
of data normalization on classification 
performance,” Appl Soft Comput, vol. 97, Dec. 
2020, doi: 10.1016/j.asoc.2019.105524. 

[25] M. Ahmed Ouameur, M. Caza-Szoka, and D. 
Massicotte, “Machine learning enabled tools and 
methods for indoor localization using low power 

wireless network ✩,” Internet of Things, vol. 12, 

p. 0, 2020, doi: 10.1016/j.iot.2020.10. 
[26] R. AŞLIYAN, “Examining Variants of Learning 

Vector Quantizations According to Normalization 
and Initialization of Vector Positions,” European 
Journal of Science and Technology, Dec. 2022, 
doi: 10.31590/ejosat.1222296. 

[27] B. Paul and B. Karn, “Heart disease prediction 
using scaled conjugate gradient 
backpropagation of artificial neural network,” 
Soft comput, vol. 27, no. 10, pp. 6687–6702, 
May 2023, doi: 10.1007/s00500-022-07649-w. 

[28] H. Benhar, A. Idri, and J. L Fernández-Alemán, 
“Data preprocessing for heart disease 
classification: A systematic literature review.,” 
Oct. 01, 2020, Elsevier Ireland Ltd. doi: 
10.1016/j.cmpb.2020.105635. 

[29] F. Thabtah, S. Hammoud, F. Kamalov, and A. 
Gonsalves, “Data imbalance in classification: 
Experimental evaluation,” Inf Sci (N Y), vol. 513, 
pp. 429–441, Mar. 2020, doi: 
10.1016/j.ins.2019.11.004. 

[30] P. Zhang, Y. Jia, and Y. Shang, “Research and 
application of XGBoost in imbalanced data,” Int 
J Distrib Sens Netw, vol. 18, no. 6, Jun. 2022, 
doi: 10.1177/15501329221106935. 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.932
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 964-976                                        e-ISSN: 2656-8632 

 

Manuscript received 18 May 2025; Revised 10 July 2025;  Accepted 30 July 2025; Available online 2 August 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.932 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 974               

[31] C. Vairetti, J. L. Assadi, and S. Maldonado, 
“Efficient hybrid oversampling and intelligent 
undersampling for imbalanced big data 
classification,” Expert Syst Appl, vol. 246, Jul. 
2024, doi: 10.1016/j.eswa.2024.123149. 

[32] E. C. Gök and M. O. Olgun, “SMOTE-NC and 
gradient boosting imputation based random 
forest classifier for predicting severity level of 
covid-19 patients with blood samples,” Neural 
Comput Appl, vol. 33, no. 22, pp. 15693–15707, 
Nov. 2021, doi: 10.1007/s00521-021-06189-y. 

[33] C. H. Bhavani and A. Govardhan, “Cervical 
cancer prediction using stacked ensemble 
algorithm with SMOTE and RFERF,” Mater 
Today Proc, vol. 80, pp. 3451–3457, Jan. 2023, 
doi: 10.1016/j.matpr.2021.07.269. 

[34] I. Priyana, N. Alamsyah, Budiman, A. P. 
Sarifiyono, and E. Rusnendar, “Predictive 
Boosting for Employee Retention with SMOTE 
and XGBoost Hyperparameter Tuning,” in 2024 
International Conference on Smart Computing, 
IoT and Machine Learning, SIML 2024, Institute 
of Electrical and Electronics Engineers Inc., 
2024, pp. 92–97. doi: 
10.1109/SIML61815.2024.10578116. 

[35] L. Breiman, “Random Forests,” 2001. 
[36] S. Dhanka and S. Maini, “Random Forest for 

Heart Disease Detection: A Classification 
Approach,” in 2021 IEEE 2nd International 
Conference on Electrical Power and Energy 
Systems, ICEPES 2021, Institute of Electrical 
and Electronics Engineers Inc., 2021. doi: 
10.1109/ICEPES52894.2021.9699506. 

[37] M. Pal and S. Parija, “Prediction of Heart 
Diseases using Random Forest,” in Journal of 
Physics: Conference Series, IOP Publishing Ltd, 
Mar. 2021. doi: 10.1088/1742-
6596/1817/1/012009. 

[38] K. M. M. Uddin, A. Al Mamun, A. Chakrabarti, R. 
Mostafiz, and S. K. Dey, “An ensemble machine 
learning-based approach to predict cervical 
cancer using hybrid feature selection,” 
Neuroscience Informatics, vol. 4, no. 3, p. 
100169, Sep. 2024, doi: 
10.1016/j.neuri.2024.100169. 

[39] P. Probst, “Hyperparameters, Tuning and Meta-
Learning for Random Forest and Other Machine 
Learning Algorithms,” 2019. 

[40] P. Probst, M. N. Wright, and A. L. Boulesteix, 
“Hyperparameters and tuning strategies for 
random forest,” May 01, 2019, Wiley-Blackwell. 
doi: 10.1002/widm.1301. 

[41] J. Ivan and S. Y. Prasetyo, “Heart Disease 
Prediction Using Ensemble Model and 
Hyperparameter Optimization,” International 
Journal on Recent and Innovation Trends in 
Computing and Communication, vol. 11, pp. 

290–295, 2023, doi: 
10.17762/ijritcc.v11i8s.7208. 

[42] A. Baita, I. A. Prasetyo, and N. Cahyono, 
“HYPERPARAMETER TUNING ON RANDOM 
FOREST FOR DIAGNOSE COVID-19,” JIKO 
(Jurnal Informatika dan Komputer), vol. 6, no. 2, 
Aug. 2023, doi: 10.33387/jiko.v6i2.6389. 

[43] M. A. Jumaah, Y. H. Ali, T. A. Rashid, and S. 
Vimal, “FOXANN: A Method for Boosting Neural 
Network Performance,” 2024. doi: 
https://doi.org/10.48550/arXiv.2407.03369. 

[44] M. H. Nadimi-Shahraki, H. Zamani, Z. Asghari 
Varzaneh, and S. Mirjalili, “A Systematic Review 
of the Whale Optimization Algorithm: Theoretical 
Foundation, Improvements, and Hybridizations,” 
Archives of Computational Methods in 
Engineering, vol. 30, no. 7, pp. 4113–4159, Sep. 
2023, doi: 10.1007/s11831-023-09928-7. 

[45] O. O. Akinola, A. E. Ezugwu, J. O. Agushaka, R. 
A. Zitar, and L. Abualigah, “Multiclass feature 
selection with metaheuristic optimization 
algorithms: a review,” Nov. 01, 2022, Springer 
Science and Business Media Deutschland 
GmbH. doi: 10.1007/s00521-022-07705-4. 

[46] J. J. Tanimu, M. Hamada, M. Hassan, H. A. 
Kakudi, and J. O. Abiodun, “A Machine Learning 
Method for Classification of Cervical Cancer,” 
Electronics (Switzerland), vol. 11, no. 3, Feb. 
2022, doi: 10.3390/electronics11030463. 

[47] J. Lu, E. Song, A. Ghoneim, and M. Alrashoud, 
“Machine learning for assisting cervical cancer 
diagnosis: An ensemble approach,” Future 
Generation Computer Systems, vol. 106, pp. 
199–205, May 2020, doi: 
10.1016/j.future.2019.12.033. 

[48] Y. Rimal and N. Sharma, “Hyperparameter 
optimization: a comparative machine learning 
model analysis for enhanced heart disease 
prediction accuracy,” Multimed Tools Appl, vol. 
83, no. 18, pp. 55091–55107, May 2024, doi: 
10.1007/s11042-023-17273-x. 

[49] Q. H. Doan, S. H. Mai, Q. T. Do, and D. K. Thai, 
“A cluster-based data splitting method for small 
sample and class imbalance problems in impact 
damage classification[Formula presented],” Appl 
Soft Comput, vol. 120, May 2022, doi: 
10.1016/j.asoc.2022.108628. 

[50] D. Chicco and G. Jurman, “The advantages of 
the Matthews correlation coefficient (MCC) over 
F1 score and accuracy in binary classification 
evaluation,” BMC Genomics, vol. 21, no. 1, Jan. 
2020, doi: 10.1186/s12864-019-6413-7. 

[51] A. P. Kumar, Y. Macha, and A. S. Kumar, 
“HEART FAILURE DETECTION USING 
OPTIMIZATION ALGORITHMS,” J Theor Appl 
Inf Technol, vol. 15, no. 7, 2025, [Online]. 
Available: www.jatit.org 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.932
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 964-976                                        e-ISSN: 2656-8632 

 

Manuscript received 18 May 2025; Revised 10 July 2025;  Accepted 30 July 2025; Available online 2 August 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.932 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 975               

[52] N. K. Chauhan and K. Singh, “Performance 
Assessment of Machine Learning Classifiers 
Using Selective Feature Approaches for Cervical 
Cancer Detection,” Wirel Pers Commun, vol. 
124, no. 3, pp. 2335–2366, Jun. 2022, doi: 
10.1007/s11277-022-09467-7. 

[53] D. Shah, S. Patel, and S. K. Bharti, “Heart 
Disease Prediction using Machine Learning 
Techniques,” SN Comput Sci, vol. 1, no. 6, Nov. 
2020, doi: 10.1007/s42979-020-00365-y. 

[54] M. G. El-Shafiey, A. Hagag, E. S. A. El-Dahshan, 
and M. A. Ismail, “A hybrid GA and PSO 
optimized approach for heart-disease prediction 
based on random forest,” Multimed Tools Appl, 
vol. 81, no. 13, pp. 18155–18179, May 2022, doi: 
10.1007/s11042-022-12425-x. 

[55] S. A. Ardiyansa, N. C. Maharani, S. Anam, and 
E. Julianto, “OPTIMIZING HEART ATTACK 
DIAGNOSIS USING RANDOM FOREST WITH 
BAT ALGORITHM AND GREEDY 
CROSSOVER TECHNIQUE,” BAREKENG: 
Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 
2, pp. 1053–1066, May 2024, doi: 
10.30598/barekengvol18iss2pp1053-1066. 

[56] J. Huang, M. M. S. Sabri, D. V. Ulrikh, M. Ahmad, 
and K. A. M. Alsaffar, “Predicting the 
Compressive Strength of the Cement-Fly Ash–
Slag Ternary Concrete Using the Firefly 
Algorithm (FA) and Random Forest (RF) Hybrid 
Machine-Learning Method,” Materials, vol. 15, 
no. 12, Jun. 2022, doi: 10.3390/ma15124193. 

[57] M. Youssef, M. A. Deif, R. Elgohary, H. Attar, M. 
Hafez, and S. M. Sharfo, “Fox Optimizer and 
Logistic Regression for Liver Diseases 
Classification,” in 2nd International Engineering 
Conference on Electrical, Energy, and Artificial 
Intelligence, EICEEAI 2023, Institute of Electrical 
and Electronics Engineers Inc., 2023. doi: 
10.1109/EICEEAI60672.2023.10590225. 

[58] V. Shalamov, V. Efimova, and A. Filchenkov, 
“Faster Hyperparameter Optimization via 
Finding Minimal Regions in Random Forest 
Regressor,” in Procedia Computer Science, 
Elsevier B.V., 2022, pp. 378–386. doi: 
10.1016/j.procs.2022.11.022. 

[59] M. K. Suryadi, R. Herteno, S. W. Saputro, M. R. 
Faisal, and R. A. Nugroho, “A Comparative 
Study of Various Hyperparameter Tuning on 
Random Forest Classification with SMOTE and 
Feature Selection Using Genetic Algorithm in 
Software Defect Prediction,” Journal of 
Electronics, Electromedical Engineering, and 
Medical Informatics, vol. 6, no. 2, pp. 137–147, 
Apr. 2024, doi: 10.35882/jeeemi.v6i2.375. 

[60] R. Valarmathi and T. Sheela, “Heart disease 
prediction using hyper parameter optimization 
(HPO) tuning,” Biomed Signal Process Control, 

vol. 70, Sep. 2021, doi: 
10.1016/j.bspc.2021.103033. 

[61] R. Torthi, A. D. K. Marapatla, S. Mande, H. K. V. 
Gadiraju, and C. Kanumuri, “Heart Disease 
Prediction Using Random Forest Based Hybrid 
Optimization Algorithms,” International Journal 
of Intelligent Engineering and Systems, vol. 17, 
no. 2, pp. 134–144, 2024, doi: 
10.22266/ijies2024.0430.12. 

[62] V. Parikh, B. Sharma, A. Byotra, and A. 
Malhotra, “Optimizing Heart Disease Prediction 
Using a Hybrid Dynamic Swarm Evolution 
Approach,” SN Comput Sci, vol. 5, no. 8, Dec. 
2024, doi: 10.1007/s42979-024-03484-y. 

  

Author Biography 

Afidatul Masbakhah, S. Mat 
received her Bachelor’s degree 
(S. Mat) in Mathematics from the 
Mathematics Study Program at 
Maulana Malik Ibrahim State 
Islamic University of Malang, 
with a focus on Statistics from 
2018 to 2022. She has 
experience in fieldwork, serving 

in the data collection division and as an assistant 
financial manager at Pos Indonesia, Blitar at 2020. She 
conducted research on the implementation of the 
Bagging CART method for admission data as part of 
her undergraduate thesis at 2022. Currently, she is a 
Master's student in Mathematics at the Graduate 
School of Universitas Brawijaya started from 2023. She 
has also conducted research on hybrid machine 
learning methods combined with swarm intelligence for 
feature selection. Her research interests include 
intelligent computing, machine learning, and data 
science. She can be contacted via email at 
afidah29600@gmail.com.  

 

 Dr. Dra. Umu Sa’adah M.Si., the 
corresponding author, received the 
bachelor, master, and doctoral 
degree in Mathematics from 
Universitas Gadjah Mada, Indonesia 
in 1993, 2002, and 2015, 
respectively. She is currently an 

associate professor at the Department of Mathematics 
in the Faculty of Mathematics and Natural Sciences, 
Brawijaya University, Indonesia. She began her 
research career in 2002, focusing on bootstrap 
application. Her research interests are in artificial 
neural networks, bootstrap, data science, data mining, 
machine learning, statistics, and risk theory. She also 
has authored several books, including “Kupas Tuntas 
Algoritma Data Mining dan Implementasinya 
Menggunakan R” (2021), “Pengantar Algoritma dan 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.932
https://creativecommons.org/licenses/by-sa/4.0/
mailto:afidah29600@gmail.com


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 964-976                                        e-ISSN: 2656-8632 

 

Manuscript received 18 May 2025; Revised 10 July 2025;  Accepted 30 July 2025; Available online 2 August 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.932 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 976               

Pemrograman dengan Python” (2023), and “Teori 
Risiko Aktuaria” (2023). She can be contacted at email: 
u.saadah@ub.ac.id.  

 

 Prof. Drs. Mohamad Muslikh, 
M.Si. Ph.D. earned his bachelor's 
degree in Mathematics from 
Universitas Padjadjaran in 1987, 
his master's degree in 
Mathematics from Universitas 
Gadjah Mada in 1996, and his 
Ph.D. in Mathematics from 

Universiti Putra Malaysia in 2019. He is currently a 
Professor at the Department of Mathematics, Faculty 
of Mathematics and Natural Sciences, Universitas 
Brawijaya, and has served as the Head of the 
Research and Community Service Unit at the same 
faculty since 2020. He began his research career in 
1990, focusing on applied and theoretical mathematics. 
He has supervised 20 undergraduate students, 3 
master's students, and 1 doctoral student. He has 
authored several books, including “Analisis Real” 
(2012), “Ukuran dan Integral Lebesgue” (2013), 
"Fungsi Bernilai Himpunan” (2022)  and has 
contributed extensively to journals and conferences in 
mathematical analysis, fixed-point theory, and set-
valued functions. His research interests include real 
analysis, functional analysis, integral theory, set-valued 
theory, and fixed-point theory. He can be contacted at 
email: mslk@ub.ac.id. 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.932
https://creativecommons.org/licenses/by-sa/4.0/
mailto:u.saadah@ub.ac.id

	I. Introduction
	II. Method
	A. Data Collection
	B. Data Preprocessing
	C. Random Forest
	D. Hyperparameter Tuning
	E. FOX Algorithm
	F. Metrics Evaluation
	G. Proposed Research Method

	III. Result
	A. Data Analysis
	B. Hyperparameter Random Forest using FOX
	C. The Result of Random Forest-FOX Optimization
	D. Comparison Methods

	IV. Discussion
	V. Conclusion

