The Comparison of Extreme Machine Learning and Hidden Markov Model Algorithm in Predicting The Recurrence Of Differentiated Thyroid Cancer Using SMOTE
Abstract
Differentiated thyroid cancer is the most common type of thyroid cancer; the types in this category are papillary, follicular, and hurthel cell carcinoma. Up to 20% of DTCs will experience recurrence, although this figure reduces to 5% in low-risk patients. There is still little research on thyroid cancer prediction using a machine learning approach, especially the prediction recurrence of DTCs. This research aims to compare the performance of the Extreme Learning Machine and the Hidden Markov Model using SMOTE in predicting the recurrence of DTCs. The dataset used in this research is differentiated thyroid cancer recurrence from Kaggle. This research methodology comprises preprocessing, data sharing, SMOTE, ELM and HMM modeling algorithms, and evaluation. ELM with SMOTE gets the best results at a ratio of 90:10 with 35 hidden neurons that get an accuracy value of 1.00, precision 1.00, recall 1.00, and AUC 1.00. ELM modeling gets the best results at a ratio of 90:10 with 45 hidden neurons that get an accuracy value of 1.00, precision 1.00, recall 1.00, and AUC 1.00. HMM modeling gets the best value at a ratio of 70:30 with two hidden states and two iterations, which get an accuracy value of 0.8696, precision 0.8696, recall 0.7944, and AUC 0.9575. Last, HMM modeling with SMOTE gets the best results at a ratio of 60:40 with two hidden states and two iterations, with an accuracy value of 0.8696, precision of 0.8832, recall of 0.7848, and AUC of 0.9174. Based on the results of this study, it can be concluded that ELM with SMOTE gets the best performance, followed by ELM without SMOTE, HMM without SMOTE, and finally, HMM with SMOTE. The implication is that ELM with SMOTE can produce high accuracy in predicting the recurrence of DTCs.
Downloads
Copyright (c) 2024 Nor Aida, Triando Hamonangan Saragih, Dwi Kartini, Radityo Adi Nugroho, Dodon Turianto Nugrahadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).