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Abstract Cervical cancer remains a major global health issue and is the second most common cancer 
affecting women worldwide. Early detection is crucial for effective treatment, but remains challenging due 
to the asymptomatic nature of the disease and the visual complexity of cervical cell structures, which are 
often affected by inconsistent staining, poor contrast, and overlapping cells. This study aims to classify 
cervical cell images using Artificial Intelligence (AI) techniques by comparing the performance of 
Convolutional Neural Networks (CNNs), Support Vector Machine (SVMs), and K-Nearest Neighbors (KNNs). 
The Herlev Pap smear image dataset was used for experimentation. In the preprocessing phase, images 
were resized to 100 × 100 pixels and enhanced through grayscale conversion, Gaussian smoothing for 
noise reduction, contrast stretching, and intensity normalization. Segmentation was performed using 
region-growing and active contour methods  to isolate cell nuclei accurately. All classifiers were 
implemented using MATLAB. Experimental results show that CNN achieved the highest performance, with 
an accuracy of 85%, a precision of 86.7%, and a sensitivity of 83%, outperforming both SVM and KNN. 
These findings indicate that CNN is the most effective approach for cervical cell classification in this study. 
However, limitations such as class imbalance and occasional segmentation inconsistencies impacted 
overall performance, particularly in detecting abnormal cells. Future work will focus on improving 
classification accuracy, especially for abnormal samples , by exploring data augmentation techniques such 
as Generative Adversarial Networks (GANs) and implementing ensemble learning strategies. Additionally, 
integrating the proposed system into a real-time diagnostic platform using a graphical user interface (GUI) 
could support clinical decision-making and enhance cervical cancer screening programs. 

 

Keywords Cervical cell classification; Convolutional Neural Network; Image segmentation; Support Vector 
Machine; K Nearest Neighbors. 

 

1. Introduction  

Cervical cancer is a significant illness that poses a 
serious threat to women's health. It is acknowledged as 
the second most common and deadly cancer affecting 
women globally [1]. This cancer arises when the skin 
and mucosal cells in the cervical and vaginal areas 
become infected over time, often due to persistent 
infection with high-risk human papillomavirus (HPV) 

strains [2]. The most concerning aspect of this 
malignancy is that it often does not exhibit symptoms in 
its early stages, making early detection crucial for 
effective treatment [3]. To address this issue, 
researchers aim to enhance the speed and precision of 
detecting and classifying various cervical cell types, 
particularly abnormal cells with different levels of 
abnormalities [4]. The task, however, is challenging 
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due to variations in image quality, overlapping cells, 
artifacts, and large datasets. Ensuring robustness 
against noise, inter-patient variability, and other 
inconsistencies remains a significant hurdle [5].This 
study tackles the limitations of inaccurate and 
unreliable cervical cell image classification methods. 
Many current approaches face challenges with high 
false-positive and false-negative rates, leading to the 
misclassification of normal and abnormal cells, which 
can cause patient anxiety or delay timely interventions 
[6]. The complexity of cervical cell images, with diverse 
cell types, irregular shapes, and varying staining 
patterns, further complicates classification tasks [7]. 

Additionally, imbalanced datasets exacerbate the 
problem, often resulting in biased models that perform 
well on majority classes but poorly on minority classes 
[8]. Another critical issue arises from intricate cell 
structures affected by inconsistent staining, poor 
contrast, and overlapping cells, which hinder the 
accurate identification of individual cells and their 
features [9]. Effective segmentation and classification 
techniques are thus essential for accurate cervical 
cancer screening and diagnosis. 

Over the years, several studies have proposed 
different methods to enhance segmentation accuracy 
and classification performance. Rasheed et al. [10] 
proposed an advanced UNet architecture that 
enhanced boundary localization and minimized errors 
in overlapping cell segmentation. However, the model’s 
robustness was impacted by noise and artifacts in 
some images. Zhang et al. [11] enhanced 
segmentation performance by incorporating a global 
context mechanism into the traditional UNet (GC-
UNet), which improved the delineation of nuclei and 
effectively handled overlapping cells. Despite these 
advancements, background noise and inconsistent 
contrast in some Pap smear images continue to remain 
challenging. Ji et al. [12] introduced a deep ensemble 
learning approach by integrating multiple CNN-based 
models, which reduced false positives and enhanced 
nucleus detection. However, the increased 
computational complexity limited its scalability for real-
time applications. Wubineh et al. [13] proposed a 
RES_DCGAN-based data augmentation technique 
combined with a self-attention-enhanced ResNet50V2 
for cervical cell classification. While this approach 
improved feature extraction and addressed data 
scarcity, it did not focus on segmentation challenges 
like overlapping cells and inconsistent staining. Zhang 
et al. [14] proposed a time-series-based detection 
approach that analyzed smear image sequences to 
detect cellular changes over time, significantly 
improving detection accuracy. However, the reliance 
on temporal data limited its applicability in setups 
lacking access to such sequences.   

Nanni et al. [15] enhanced classification accuracy by 
combining deep CNN features with handcrafted 
features and SVM classifiers. Wu et al. [16] improved 
performance with a hybrid CNN-LSVM model 
optimized using Adaboost, achieving 99.5% 
classification accuracy. Mustafa et al. [17] leveraged 
transfer learning by fine-tuning ResNet-50 and 
GoogLeNet models, demonstrating superior accuracy 
even on small datasets. However, CNN-based 
methods typically require large labeled datasets and 
significant computational resources, which can limit 
their deployment in resource-constrained 
environments [18].  Ghoneim et al. [19] developed a 
CNN-ELM ensemble that combined deep and shallow 
learning models, achieving 99.5% accuracy while 
reducing training time. Conceição et al. [20] integrated 
Random Forest (RF) with Gradient Boosting Trees 
(GBT), improving noise robustness and classification 
performance. Mohammed et al. [21] designed an 
ensemble model combining CNNs, Decision Trees, 
and k-NN classifiers, achieving high sensitivity and 
specificity.  

Mansoury et al. [22] further enhanced ELMs by 
integrating genetic algorithms for parameter 
optimization, improving classification performance. Wei 
et al. [23] employed texture-based feature extraction 
and k-NN, achieving competitive performance on 
benchmark Pap smear datasets. Chaabane et al. [24] 
enhanced Decision Tree classifiers using bagging and 
boosting techniques, reducing variance and bias. 
However, k-NN can be computationally intensive due 
to distance-based calculations, while Decision Trees 
are prone to overfitting, particularly when applied to 
noisy data [25] 

These studies demonstrate progress in cervical cell 

segmentation and classification; however, several gaps 

remain. Many approaches treat segmentation and 

classification as separate tasks, which can limit overall 

system performance. Challenges such as noisy data 

and inconsistent staining are still not fully addressed. 

This research uniquely integrates dual segmentation 

techniques region growing and active contours with a 

comparative analysis of three classifiers (CNN, SVM, 

and KNN) on the same segmented data, providing a 

comprehensive evaluation under consistent 

preprocessing conditions. The CNN model is specifically 

designed as a lightweight, standalone architecture 

optimized for computational efficiency, making it suitable 

for resource-constrained clinical settings where rapid, 

automated screening is essential. The classifiers 

selected offer distinct strengths: CNNs, as deep learning 

architectures, automatically extract hierarchical features 

and effectively capture spatial relationships in complex 

cervical cell images [26]. SVMs perform well in high-

dimensional spaces, handling non-linear boundaries 
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robustly [27]. KNN, a simple yet powerful instance-based 

method, is effective for irregular decision boundaries [5]. 

Our main contributions are: 

1. A combined preprocessing pipeline (Gaussian 

smoothing, contrast stretching, intensity 

normalization) tailored to improve image quality for 

cervical cell analysis. 

2. A dual segmentation approach focusing on precise 

nucleus detection, which is critical for accurate 

classification but often overlooked in isolation. 

3. A thorough comparative evaluation of CNN, SVM, 

and KNN classifiers applied to uniformly segmented 

images, highlighting trade-offs between accuracy, 

complexity, and practicality. 

By addressing segmentation and classification jointly 

and optimizing for real-world clinical constraints, this 

study offers a more integrated and practical solution for 

automated cervical cell analysis. This study is structured 

as follows: Section 2 outlines the dataset utilized and the 

proposed methods for segmentation, post-processing, 

feature extraction, and classification. Section 3 presents 

the classification results. Section 4 provides an in-depth 

interpretation of the results, categorized and compared 

accordingly. Lastly, Section 5 summarizes the main 

findings in the conclusions. 

 

2. Method 

In this study, several image-processing techniques will 

be applied to classify images into normal and abnormal 

categories. In this study, to classify  cervical cell images, 

the system  must detect the cells that have been 

processed by image processing. The procedures for 

developing image processing steps for the process of 

classifying cervical cell images with the help of Artificial 

Intelligence (AI) are illustrated in Fig. 1. Based on Fig. 1, 

the categorization of cervical cell images using AI 

involves several steps, including research and study on 

previous research and data acquisition. Next is the 

process of preprocessing to enhance the images, 

segmentation to extract cells and background, post-

processing to remove small noise in images, feature 

extraction to differentiate between normal, intermediate, 

and abnormal, and classification to classify the images.  

A. Data Acquisition 

In this research, the dataset used is the publicly available 

Herlev database, developed at Herlev University 

Hospital in Denmark. The database is part of the NiSIS 

(Nature-Inspired Smart Information Systems, EU 

coordination action, contract 13569) and is accessible 

online at https://mde-

lab.aegean.gr/index.php/downloads/. The dataset 

comprises 917 cervical cell images categorized into 

three classes: normal, intermediate, and abnormal. As 

shown in Fig. 2, normal cells typically exhibit a small, 

round or oval nucleus with a relatively large cytoplasmic 

area. Intermediate cells present slightly enlarged, 

regular-shaped nuclei, while abnormal cells display 

irregular nuclei with distorted cytoplasm and a high 

nucleus-to-cytoplasm ratio. 

Start

Data Acquisition

(Herlev Dataset)

Pre-Processing
-Grayscale Conversion

-Gaussian Smoothing

-Contrast Stretching

-Intensity Normalization

Segmentation
-Region Growing and Active 

Contour (for Nucleus Detection)

Post-Processing
Noise Removal & Boundary 

Refinement

Feature Extraction
Area, Perimeter, Eccentricity

Compactness, Circularity

Classification
 -CNN

-SVM

-KNN

End

 

Fig. 1. Flow of Classification of Cervical Cell Image 
Using Machine Learning. 

 

Table 1 provides a summary of the visual attributes 

and image distribution across the three categories. A key 

issue with the dataset is class imbalance, as 

intermediate cells are overrepresented compared to 

normal and abnormal cells. To address this, data 

augmentation techniques, including image rotation, 

flipping, and scaling, were applied to underrepresented 

classes during the classification, thereby improving 
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generalization and reducing potential bias in model 

training. 

 

Fig. 2. The image of a single cervical cell containing 
cytoplasm, nucleus and background from pap 
smear slide. 

 

  

(a)  

  
(b)  

  
(c)  

Fig. 3. The difference between the three stages of 
cervical cell image in term of nucleus size, cell 
shape and colour: (a) Normal cervical cell, (b) 
Intermediate cervical cell, (c) Abnormal cervical 
cell 

 

B. Preprocessing Method  

In the preprocessing phase, two primary techniques, 

image resizing and image enhancement, are 

implemented to improve the uniformity and quality of 

cervical cell images. Image resizing modifies the 

dimensions of input images while preserving the aspect 

ratio to prevent geometric distortion. In this research, all 

cervical cell images are resized to 100 × 100 pixels.  

Table 1. Summary of dataset distribution and 
visual characteristics 

Class Visual Attributes 
Number 

of Images 

Normal 
Small nucleus, 

round/oval shape 
242 

Intermediate 
Slightly enlarged 

nucleus, round/oval 
525 

Abnormal 

Irregular shape, large 
nucleus, distorted 

cytoplasm 
150 

Total  917 

 

Image enhancement is employed to improve image 

clarity and reduce noise, where grayscale conversion 

precedes the enhancement steps. Gaussian smoothing, 

with a standard deviation (σ) of 1.6, is applied to reduce 

high-frequency noise by filtering local pixel variations. 

This technique smooths the image by convolving it with 

a Gaussian function, which has been proven effective in 

preprocessing cervical cytology images. For instance, in 

[26], a Gaussian filter was used to enhance grayscale 

Pap smear images and improve nuclei segmentation 

accuracy. Similarly, [27] employed a 3 × 3 Gaussian filter 

to smooth Pap smear images, enhancing subsequent 

classification and segmentation processes. In [28], a 

Laplacian of Gaussian (LoG) filter, a variant of 

Gaussian-based smoothing, was applied to detect and 

segment cervical cell nuclei with improved precision. 

Another study [29] demonstrated that Gaussian 

smoothing effectively enhances cervical cytology 

images prior to edge detection, contributing to better 

cervical cancer detection. This technique smooths the 

image by convolving it with a Gaussian function, 

expressed as Eq. (1) [29]: 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑥2 + 𝑦2

𝜎2
) (1) 

Following noise reduction, contrast stretching is applied 

to improve image brightness and contrast. The intensity 

transformation is defined by Eq. (2), which is a standard 

min-max normalization technique commonly used in 

image enhancement [30]: 

𝐼𝑛𝑒𝑤 =  
𝐼𝑜𝑙𝑑 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
∙ (𝐼𝑚𝑎𝑥𝑑𝑒𝑠

− 𝐼𝑚𝑖𝑛𝑑𝑒𝑠
)

+ 𝐼𝑚𝑖𝑛𝑑𝑒𝑠
 

(2) 

where 𝐼𝑜𝑙𝑑 represents the input pixel intensity, 𝐼𝑚𝑖𝑛 and 

𝐼𝑚𝑎𝑥 are the minimum and maximum intensities of the 

original image, and 𝐼𝑚𝑖𝑛𝑑𝑒𝑠
 and 𝐼𝑚𝑎𝑥𝑑𝑒𝑠

 define the new 

intensity range, set between 0.1 and 1 in this work. This 

step enhances the overall contrast, making the cellular 
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structures more distinguishable. Finally, intensity 

normalization is performed to standardize the pixel 

intensity distribution across images. This can be 

mathematically represented by Eq. (3) [30]: 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝐼 − 𝜇

𝜎
 (3) 

where I is the pixel intensity, and 𝜇 and 𝜎 are the mean 

and standard deviation of the pixel intensity values, 

respectively. These preprocessing operations, applied 

systematically, result in a consistent, noise-reduced, and 

visually enhanced dataset,  which facilitate improved 

performance in downstream cervical cell image 

classification tasks. The results of the image after 

preprocessing are depicted in Fig. 4. 

 

  
(a)  (b)  

Fig. 4. The result of the image after preprocessing, 
where (a) is the original image and (b) is the result 
of the denoise filtered image. 

 

C. Segmentation Method 

The segmentation of cervical cell images involves two 

key processes: the region-growing method and the 

active contour method. Region growing is an image 

processing technique that segments an image into 

coherent regions based on specific criteria. This method 

has been effectively utilized in cervical cytology image 

analysis. For example, Plissiti et al. applied region 

growing to segment cervical cell nuclei in high-resolution 

microscopic images, demonstrating its ability to 

delineate nuclear boundaries accurately and improve 

overall segmentation performance [31]. It starts with an 

initial seed point, denoted as 𝑆0(𝑥0, 𝑦0) and iteratively 

evaluates the neighboring pixels. A pixel p(𝑥, 𝑦) is added 

to the growing region R if it satisfies a predefined 

condition, typically based on intensity similarity or texture 

consistency: 

|𝐼(𝑝) − 𝐼(𝑆0)| < 𝑇 (4) 

where 𝐼(𝑝) and 𝐼(𝑆0) represent the intensity values of 

the pixel 𝑝 and the seed point 𝑆0, respectively, and 𝑇 is 

the threshold value that controls the homogeneity of the 

segmented region. This iterative expansion forms a 

segmented region R, where the combined rows, 

columns, and adjusted threshold values define the new 

binary image 𝑅(𝑥, 𝑦), highlighting the segmented 

cervical cell area. 

To enhance segmentation accuracy, particularly for 

nucleus detection, the active contour method (commonly 

known as snakes) is applied. Bamford and Lovell 

employed active contours in an unsupervised cell 

nucleus segmentation approach, achieving precise 

boundary detection in cervical cytology images [32]. This 

method seeks to minimize an energy function E as 

shown in Eq. (5) [32], which consists of internal energy 

𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, controlling the smoothness of the contour, and 

external energy 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙, which attracts the contour 

toward the object boundaries: 

𝐸 =  ∫ [𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑣(𝑠)) + 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑣(𝑠))]
1

0

𝑑𝑠 (5) 

Here, 𝑣(𝑠) = (x(s), y(s)) represents the parametric 

curve (snake) in the image domain, and 𝑠 ∈ [0,1] is the 

curve parameter. The internal energy can be expressed 

as in Eq. (6) [32]: 

𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =  
𝛼

2
|
𝜕𝑣

𝜕𝑠
|

2

+
𝛽

2
|

𝜕2

𝜕𝑠2|

2

 (6) 

where 𝛼 controls the elasticity (to prevent excessive 

stretching), and 𝛽 controls the bending (to avoid sharp 

corners). The external energy, 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 as shown in Eq. 

(7), attracts the contour toward image features, typically 

based on gradients: 

𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =  −|∇𝐼(𝑥, 𝑦)| (7) 

where ∇𝐼(𝑥, 𝑦) is the image gradient  defines the 

boundaries of the nucleus. The active contour iteratively 

deforms until it converges to the boundary of the cell 

nucleus, yielding an accurate segmentation. 

  
(a)  (b)  

Fig. 5. The result of the image after segmentation: 
(a) Original Image, (b) Segmented Image 
 

These combined segmentation techniques produce a 

refined binary image that highlights both the segmented 

cytoplasm and the detected nucleus, as shown in Fig. 5. 

By leveraging the region-growing method's adaptability 

and the active contour method's boundary precision, the 

segmentation process effectively delineates cervical cell 

structures for subsequent analysis and classification. 

 

D. Post-Processing Method 

In post-processing cervical cell images, four key 
morphological operations referring to [30] are 
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undertaken to refine the binary mask 𝑀(𝑥, 𝑦) and 

enhance segmentation accuracy. These steps address 
noise, smooth region boundaries, and generate a final 
masked image. 

1. Dilation: This operation expands the boundaries of 
segmented regions to connect nearby regions that 
may have been separated by noise. Mathematically, 
the dilation Md of the binary mask MMM using a 
structuring element 𝐵 is defined as Eq. (8): 

𝑀𝑑(𝑥, 𝑦) =  max
(𝑖,𝑗)∈𝐵

{𝑀(𝑥 − 𝑖, 𝑦 − 𝑗} (8) 

     Here, the structuring element 𝐵 determines the 

extent of dilation, which helps in merging 
disconnected but spatially close regions. 

2. Erosion: After dilation, erosion 𝑀𝑒 is applied to 

contract the boundaries of the regions, remove 
small noise components, and refine the shape of the 
segmented areas. Erosion is mathematically 
represented as Eq. (9): 

𝑀𝑒(𝑥, 𝑦) =  max
(𝑖,𝑗)∈𝐵

{𝑀𝑑(𝑥 + 𝑖, 𝑦

+ 𝑗} 
(9) 

     This step complements dilation by smoothing 
irregularities introduced during the expansion 
phase. 

3. Hole Filling: The next step involves filling holes 
within the segmented regions. Given a binary mask 
𝑀𝑒, the hole-filling operation can be modeled using 
morphological reconstruction. Let 𝑀ℎ𝑜𝑙𝑒 be the mask 

with filled holes. This operation can be expressed 
as finding the connected complement regions and 
filling them: 

𝑀ℎ𝑜𝑙𝑒

=  ¬|𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(¬𝑀𝑒)| 
(10) 

     where ¬ denotes the complement of the mask, and 

the reconstruction ensures that gaps inside 
segmented objects are filled. 

 

4. Masking: Finally, the refined binary mask 𝑀ℎ𝑜𝑙𝑒 is 
applied to the original grayscale image 𝐼(𝑥, 𝑦), 

preserving the intensity values within the mask's 
regions and setting the pixel values outside the 
mask to zero. This operation can be modeled as Eq. 
(11): 

𝐼𝑚𝑎𝑠𝑘𝑒𝑑(𝑥, 𝑦)

=  {
𝐼(𝑥, 𝑦), 𝑖𝑓 𝑀ℎ𝑜𝑙𝑒(𝑥, 𝑦) = 1

0, 𝑖𝑓 𝑀ℎ𝑜𝑙𝑒(𝑥, 𝑦) = 0
 

(11) 

This masking step effectively removes background 
regions, retaining only the relevant  areas of cervical 
cells. 

In summary, these post-processing steps dilation, 
erosion, hole filling, and masking, enhance the 
segmentation by refining region boundaries, 

eliminating noise, and filling internal gaps. The final 
result is a clean and smooth binary mask used to 
generate a segmented version of the original image. 
The image outcome after the complete segmentation 
and post-processing pipeline is illustrated in Fig. 6.  

  
(a)  (b)  

 
 

(c)                 (d) 

Fig. 6. Results of the image after applying the 
complete framework: (a) original image, (b) 
preprocessing, (c) region growing post-
processing, and (d) segmentation. 

 

E. Feature Extraction Method 

Feature extraction focuses on shape-based features 
derived from the geometric properties of cervical cells. 
Features such as area, perimeter, eccentricity, and 
other shape descriptors offer insights into cell 
morphology. The process begins by extracting 
boundaries of connected components in the binary 
image, representing the contours of individual objects. 
Matrices are initialized to store shape-based features 
like area, perimeter, compactness, circularity, and 
eccentricity for each object, which are standard 
morphological descriptors in image analysis [30] as 
shown in Eq. (12) – (15). The system calculates these 
features for each object by extracting its boundary and 
determining its area, which represents the total number 
of pixels enclosed. The final step involves displaying 
the calculated values for area, perimeter, 
compactness, circularity, and eccentricity. This feature 
extraction method provides valuable information about 
the morphology and structure of cervical cells. To 
calculate the area of cervical cells is: 

𝐴𝑟𝑒𝑎 =  ∑ ∑ 𝐵(𝑖, 𝑗)
𝑚

𝑗

𝑛

𝑖
, (12) 

where 𝐵(𝑖, 𝑗) is a binary image with values indicating 

the presence or absence of the object. To calculate the 
compactness: 
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𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

𝐴𝑟𝑒𝑎
. (13) 

To calculate the circularity, 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  
4𝜋𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
. (14) 

To calculate the eccentricity, 

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =  √1 −
𝑏2

𝑎2
. (15) 

E.  Classification 

This study employs three machine learning classifiers: 

Convolutional Neural Network (CNN), Support Vector 

Machine (SVM), and K-Nearest Neighbors (KNN), each 

selected based on  to its nature, which are well-suited to 

the characteristics of cervical cell image data. CNN is 

chosen for its ability to automatically learn hierarchical 

and spatial features from images, which is particularly 

advantageous given the complex morphology and 

variability in cervical cell structures. SVM is included for 

its effectiveness in high-dimensional spaces and its 

strong performance with small to moderately sized 

datasets, making it suitable for medical imaging tasks 

where data is often limited. KNN, an interpretable yet 

straightforward algorithm, serves as a useful baseline for 

comparison due to its instance-based nature and 

minimal training time. Although more advanced models 

such as ensemble deep learning or transformer-based 

architectures may offer higher accuracy, this study 

prioritizes models that balance performance with 

interpretability and computational efficiency. This 

consideration is essential for practical implementation in 

resource-constrained environments such as low-cost 

screening systems. The inclusion of these three 

classifiers allows for a comprehensive evaluation of 

model performance across different algorithmic 

paradigms deep learning, margin-based learning, and 

instance-based learning. 

1) K-Nearest Neighbours 
The K-Nearest Neighbours (KNN) algorithm is one of the 

simplest yet effective machine learning algorithms used 

for classification tasks, including image classification. It 

operates based on the principle of similarity: objects that 

are closer in the feature space are more likely to belong 

to the same category [33]. KNN is a non-parametric, 

instance-based learning algorithm, which means it does 

not make any assumptions about the underlying data 

distribution and instead memorizes the training dataset, 

rather than learning explicit decision boundaries. 

In KNN, the classification of a new input image is 

determined by finding its k nearest neighbours in the 

training dataset and assigning the label that is most 

frequent among these neighbours [34]. The process 

involves calculating the distance between the input 

image and each image in the training dataset. Common 

distance metrics used include Euclidean distance, 

Manhattan distance, and Minkowski distance. The most 

widely used distance metric, Euclidean distance, can be 

calculated as Eq. (16) below [35]: 

𝑑(𝑥, 𝑥𝑖) = √∑(𝑥𝑗 − 𝑥𝑖,𝑗)
2

𝑛

𝑗=1

 (16) 

Here, 𝑑(𝑥, 𝑥𝑖) represents the Euclidean distance 

between the input vector x and a training sample 𝑥𝑖, 

where 𝑥𝑗 and 𝑥𝑖,𝑗 are the j-th features of x and 𝑥𝑖, 

respectively, and n is the total number of features. 

In this study, the K-Nearest Neighbors (KNN) 

algorithm was utilized as a baseline classifier to evaluate 

the effectiveness of morphological features extracted 

from segmented cervical cell images. KNN was selected 

due to its intuitive, non-parametric nature and its ability 

to perform well on small to medium-sized datasets 

without requiring extensive model training. This study 

utilizes KNN to classify cells based on shape-based 

features, including area, perimeter, circularity, and 

eccentricity, which are relevant indicators of nucleus 

morphology. To optimize the classifier's performance, 

several parameters were configured, including the 

number of neighbors (k), the distance metric, and the 

weighting function. The selection of these parameters 

was based on empirical testing and cross-validation to 

ensure a balanced trade-off between classification 

accuracy and computational efficiency. The parameters 

and their configurations are summarized in Table 2. 

 

Table 2. KNN classifier parameters and 
configurations 

Parameter Value 

k (Neighbors) 5 

Distance Metric  Euclidean 

Weight Function Uniform 

Feature Space  Shape-based 

 

2)  Support Vector Machine 
In this research, the Support Vector Machine (SVM) 

algorithm is recognized as a powerful classification 

model within machine learning and a widely used 

discriminant method [36]. Compared to other 

classification techniques in data mining, SVM 

demonstrates superior generalization performance [37], 

[38]. It also offers advanced theoretical methods for 

handling non-linearly separable data. For linearly 

separable data, the primary objective is to identify the 

hyperplane that maximizes the margin, defined as the 

most significant sum of distances between neighbouring 
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data points and the separating line. When dealing with 

non-linearly separable data, SVM employs a kernel 

function to map the data into a higher-dimensional 

space, making it linearly separable [39]. 

SVM is specifically designed for two primary cases: 

linearly separable and linearly non-separable data. For 

linearly separable data, SVM finds the optimal 

hyperplane by maximizing the margin between the two 

classes. The discriminant function for binary 

classification can be expressed as Eq. (17) [39]: 

𝑔(𝑥)  =  𝑤𝑇𝑥 + 𝑏 (17) 

where 𝑔(𝑥) = 0 represents the hyperplane HHH, which 

separates the two classes. Based on this, the 

classification rules follow the logic outlined in Eq. (18) 

[39]: 

𝑦𝑖(𝑤𝑇𝑥𝑖 +) ≥ 1. (18) 

For linearly non-separable data, SVM applies a kernel 

function to map the input data from a lower-dimensional 

space to a higher-dimensional space, where the data 

might become linearly separable. The key mathematical 

operations involved in SVM classification are performed 

using inner products. To enhance the feature mapping, 

these inner product operations are replaced with kernel 

functions [40]. There are currently three main types of 

kernel functions, as expressed in the following Eq. (19) 

– (21) [40]: 

1. Polynomial kernel function 

𝐾𝑝𝑙𝑜𝑦(𝑥, 𝑥𝑖) = [(𝑥 ∙ 𝑥𝑖) + 1]1 (19) 

The result is a polynomial classifier of order q; 

2. Radial basis kernel function (RBF) 

𝐾𝑒𝑏𝑓(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (
|𝑥 − 𝑥𝑖|2

𝜎2
) (20) 

3. Sigmoid kernel function 

𝐾(𝑥, 𝑥𝑖) = tanh(𝑣(𝑥 ∙ 𝑥𝑖) + 𝑐) (21) 

Different kernel functions are selected based on the 

specific classification problem. Among them, radial basis 

kernel functions and polynomial kernel functions are the 

most commonly used due to their strong classification 

capabilities. The effectiveness of SVM depends not only 

on selecting an appropriate kernel function but also on 

tuning parameter values, which directly impact the 

classification results. The kernel function essentially 

performs a mapping from a low-dimensional feature 

space to a higher-dimensional space, where non-linearly 

separable data might become linearly separable. This 

allows SVM to address the challenges posed by non-

linear data distributions by transforming the problem into 

one that can be solved using linear separation 

techniques. 

To ensure optimal classification performance, several 

key parameters were configured, including the choice of 

kernel function, regularization parameter (C), kernel 

coefficient (γ), and decision function shape. These 

parameters were selected through empirical tuning 

using cross-validation to balance the bias-variance 

trade-off and maximize classification accuracy. The 

selected parameters and their configuration space are 

presented in Table 3. 

 

Table 3. SVM classifier parameters and 
configurations 

Parameter Value 

Kernel Function RBF 

Regularization Parameter (C) 1.0 

Kernel Coefficient (γ) 0.01 

Tolerance (tol) 0.001 

 

3)  Convolutional Neural Network 
A Convolutional Neural Network (CNN) is a specialized 

type of neural network, widely utilized in the field of 

image recognition [41], [42]. The structure of a CNN 

typically comprises an input layer, two convolutional 

layers, two pooling layers, two fully connected layers, 

and an output layer, making up a total of eight layers 

[43]. Let the m-th input feature map to the convolutional 

layer be denoted as 𝑋𝑚, and 𝑊𝑛,𝑚 represent the 

convolution kernel connecting the m-th input feature 

map to the n-th feature map in the current layer. The 

output 𝑦𝑛 of the n-th feature map in the convolutional 

layer can then be expressed as Eq. (22) [43]: 

𝑦𝑛 = 𝑓 (∑ 𝑋𝑚 ∗

𝑚

𝑊𝑛,𝑚 + 𝑏𝑛) (22) 

Here, 𝑏𝑛 represents the bias parameter of the n-th 

feature map in the current layer, and ∗ denotes the 

discrete convolution operation. The function 𝑓 is the 

activation function, commonly a non-linear mapping [16]. 

Pooling operations, which include max pooling and 

average pooling, are essential components of CNNs, 

helping reduce the spatial dimensions of feature maps 

to mitigate overfitting and enhance optimization 

efficiency [44]. After convolution operations, extract 

relevant features; these features can be used to train the 

classifier. One standard classifier is the Softmax 

classifier, though it can face challenges related to 

computational complexity.  

If the image input to the pooling layer is denoted as 

𝑥(𝑙−1), and the image output after pooling is 𝑥(𝑙), the 

pooling operation can be represented mathematically as 

Eq. (23) [43], [44]: 

𝑥(𝑙) = 𝑑𝑜𝑤𝑚(𝑥(𝑙−1)) (23) 

The fully connected layer is at the tail of the convolutional 

neural network. It converts the two-dimensional feature 
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map of the convolution output into a one-dimensional 

vector, that is, connects all the features, and finally 

sends the output value to the classifier, such as Softmax 

classifier [45]. After Softmax, the output can be 

expressed as Eq. (24): 

𝑆(𝑦)𝑖 =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝑛
𝑗=1

 (24) 

To enhance learning performance and prevent 
overfitting, several key hyperparameters were 
configured, including the number of convolutional 
filters, kernel size, activation function, optimizer type, 
batch size, and number of epochs. These parameters 
were empirically tuned based on validation 
performance and are summarized in Table 4. 

 
Table 4. CNN classifier parameters and 
configurations 

Parameter Value 

Input Image Size 100 × 100 

Pooling Type Max Pooling 

Activation Function ReLU 

Optimizer Adam 

Learning Rate 0.001 

Epochs 50 

Loss Function 
Categorical Cross-

Entropy 

Output Layer Activation Softmax 

The dataset was partitioned into 80% for training and 
20% for testing to enable the model to learn 
representative patterns from the majority of the data 
while reserving an independent subset for unbiased 
performance evaluation. Due to the inherent class 
imbalance where intermediate-class images 
significantly outnumber normal and abnormal classes 
data augmentation was applied during the training 
phase to mitigate potential model bias toward the 
majority class. Augmentation techniques included 
geometric transformations such as random rotation 
(±15°), horizontal and vertical flipping, and random 
scaling within a defined range. These transformations 
were selectively applied to the minority classes (normal 
and abnormal) to synthetically increase their sample 
diversity and improve class balance during model 
training. This approach enhances the generalization 
capability of the classifiers, particularly for 
underrepresented categories of cervical cells. 

 

3. Result 

In this section, 11 randomly selected images to 

demonstrate the performance of this system. The 

system contains the original images, image processing, 

and classification results. The segmentation results, as 

displayed in Fig. 7(a)-(k), generally demonstrate the 

segmentation algorithm's ability to focus on the nucleus 

region, which is critical for cervical cell analysis. Since 

the nucleus plays a significant role in distinguishing 

normal and abnormal cells, the primary evaluation 

question is how effectively the segmentation isolates 

and captures the nucleus across various images. 

 

  
(a) Normal Superficial 10 

  
(b) Normal Superficial 11 

  
(c) Normal Superficial 29 

  
(d) Normal Superficial 47 

  
(e) Intermediate 21 
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(f) Intermediate 3 

  
(g) Intermediate 121 

  
(h) Abnormal 3 

  
(i) Abnormal 41 

  
(j) Abnormal 102 

  
(k) Abnormal 138 

Fig. 7. Segmentation results of 11 selected cervical 
cell images from (a) to (k), where the left images are 

the originals and the right images show the 
segmented results. 

 

The segmentation results, as shown in Fig. 7, 

generally demonstrate the algorithm's ability to focus on 

the nucleus region, which is crucial for cervical cell 

analysis. Since the nucleus plays a significant role in 

distinguishing normal and abnormal cells, the primary 

evaluation question is how effectively the segmentation 

isolates and captures the nucleus across various 

images. Images (a) - (d) feature relatively more minor 

nuclei, while images (e) - (g) exhibit medium-sized 

nuclei, and images (h) – (k) display larger nuclei 

compared to the others. 

A closer examination of the black-and-white 

segmentation masks reveals that the segmentation 

results generally follow the proportional size and shape 

of the nuclei across different samples. For instance, in 

images (a) – (d), the segmented nucleus appears 

smaller, aligning with the actual nucleus size in the 

corresponding original images. Similarly, images (h) – 

(k), which have larger nuclei, display proportionately 

larger segmented masks. This indicates that the 

segmentation method effectively adapts to different 

nucleus sizes, maintaining the proportionality and 

relative boundaries. 

However, some limitations in the segmentation have 

also been observed. Notably, in image (d), the 

segmentation includes additional noise, resulting in a 

less refined boundary around the nucleus. This could 

potentially affect classification accuracy if such noise 

remains uncorrected in preprocessing. Furthermore, 

image 10 presents an interesting segmentation 

inversion, where the nucleus becomes part of the 

background (black), and the cytoplasm is segmented as 

the primary object (white). This inversion may reflect an 

edge case where the algorithm misinterprets intensity 

levels, leading to inaccurate segmentation. 

Despite these occasional anomalies, the 

segmentation results are, overall, relatively acceptable, 

capturing the key morphological features of the cervical 

cell nuclei in most samples. These observations suggest 

that the segmentation technique successfully generates 

binary masks that align well with the nuclei' actual 

dimensions in a majority of the cases. However, given 

that this study's primary focus is on image classification, 

no quantitative evaluation of segmentation accuracy 

was performed in this section. Instead, the segmented 

masks were visually assessed to ensure that they 

provide sufficiently accurate input for subsequent 

classification. 

To present the classification performance clearly, the 

confusion matrices for each model are illustrated in Figs. 

Figs. 8, 9, and 10. These figures display the detailed 
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outcomes of the classification process, highlighting the 

number of correctly and incorrectly classified instances 

for both normal and abnormal cervical cells. Specifically, 

Fig. 8 represents the confusion matrix for the CNN 

model, which achieved the highest overall accuracy and 

precision. Fig. 9 displays the confusion matrix for the 

SVM model, illustrating moderate performance with a 

relatively higher tendency for false negatives. Finally, 

Fig. 10 shows the confusion matrix for the KNN model, 

which, while achieving lower accuracy compared to 

CNN and SVM, still demonstrates reasonable 

classification capability.  
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Fig. 8. Confusion Matrix of CNN 
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Fig. 9. Confusion matrix of SVM 
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Fig. 10. Confusion matrix of KNN 
 

The CNN model demonstrated the strongest 

performance among the three classifiers in terms of 

accuracy, precision, and sensitivity. With an accuracy of 

85%, CNN correctly classified 779 out of 917 images, 

achieving the highest overall classification rate. The 

precision of 86.70% indicates that CNN can confidently 

predict abnormal cervical cells with a low false positive 

rate, minimizing unnecessary alerts and follow-ups. 

Additionally, its sensitivity of 83% shows that it can 

detect 83% of actual abnormal cases while missing 17% 

due to false negatives. This balance between precision 

and sensitivity makes CNN highly reliable for medical 

diagnostics, where detecting abnormalities while 

minimizing false positives is crucial for patient outcomes 

and treatment effectiveness. 

The SVM classifier had moderate performance 

compared to CNN, with an accuracy of 78.95%. It 

achieved an 84% precision, meaning that most 

abnormal predictions were correct, which is essential in 

minimizing false positives. However, its sensitivity was 

relatively low at 67%, indicating that the SVM struggled 

to detect abnormal cases effectively and missed a 

significant number of them. This trade-off between high 

precision and lower recall means that while SVM can 

accurately classify abnormal cells, it may overlook many 

actual abnormal cases, leading to potential risks in 

clinical diagnostics. This performance imbalance 

suggests that SVM could benefit from enhanced feature 

selection, hyperparameter tuning, or being part of an 

ensemble method to improve recall without sacrificing 

precision. 

The KNN model performed the weakest among the 

three classifiers, with an accuracy of 72.90%. Despite 

achieving a high precision of 69.23%, its sensitivity was 

low at 70%, reflecting a significant challenge in correctly 

identifying abnormal cervical cells. This low sensitivity 

indicates that KNN frequently misclassifies abnormal 

cases as usual, resulting in 30% of actual abnormal 

cases being missed. Additionally, KNN’s performance 

may be affected by its inherent sensitivity to noisy data 

and its reliance on simple distance-based metrics. In 

medical diagnostics, this low recall is a significant 

concern as it could lead to missed detections of critical 

cases, underscoring the need for further optimization or 

a more advanced feature representation. 
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Table 5. Performance of classification 

Classifier Accuracy 
(%) 

Precision 

(%) 

Sensitivity 
(%) 

CNN 85 86.07 83 
SVM 78.95  84 67 
KNN 72.90 86.70 70 

 
This section presents an analysis of the accuracy, 

precision, and sensitivity of cervical cell classification 
methods. The research  aims to determine the most 
efficient approach for classifying cervical cell images by 
training and testing on a dataset of 917 images, with 
80% of the images used for training and 20% for testing. 
According to the results presented in Table 5 and Fig. 
11, the CNN outperforms other methods, achieving an 
accuracy of 85%, which is higher than that of SVM at 
78.95% and KNN at 72.8%. Precision, measuring 
positive predictions' accuracy, is crucial in healthcare; 
CNN exhibits 86.7%, surpassing SVM (84%) and KNN 
(69.23%). Sensitivity, gauging the ability to identify 
abnormal cases, sees CNN leading with 83%, 
outperforming SVM (67%) and KNN (70%). in accurately 
classifying cervical cell images. 

 

 

Fig. 11. Visual representation of classification 
performance. 

 

4. Discussion 

All three classifiers exhibit distinct strengths and 

weaknesses, CNN outperformed both SVM and KNN in 

terms of accuracy, precision, and recall, making it the 

most balanced and effective model for cervical cell 

classification. SVM’s high precision but low recall 

suggests that it excels in avoiding false positives but 

struggles to capture actual abnormal cases. KNN, with 

its weaker overall performance, highlights the 

importance of optimizing distance-based classification in 

noisy medical datasets. To further enhance classification 

performance, future work could explore ensemble 

techniques, deeper hyperparameter tuning, or advanced 

feature extraction methods to strike a better balance 

between precision and recall across all models. 

In comparison to previous studies, the CNN-based 

classifier implemented in this study demonstrates 

competitive performance. For instance, Wu et al. [16] 

achieved a classification accuracy of 99.5% using a 

hybrid CNN-LSVM model optimized with Adaboost, but 

their method involved a more complex ensemble 

framework with higher computational requirements. 

Notably, Wu et al.’s study focused on binary 

classification, which generally tends to yield higher 

accuracy compared to multi-class problems. Similarly, 

Ghoneim et al. [19] reported an accuracy of 99.5% using 

a CNN-ELM ensemble, which, while effective, combines 

both deep and shallow learners and also addresses a 

binary classification task. In contrast, the CNN in this 

study, though achieving a lower accuracy of 85%, is a 

lightweight standalone model that is computationally 

simpler and better suited for resource-constrained 

environments. Compared to the RES_DCGAN-

ResNet50V2 model used by Wubineh et al. [13], which 

enhances performance through data augmentation and 

self-attention mechanisms, our approach focuses on 

conventional preprocessing and handcrafted features, 

reflecting a more accessible implementation. These 

comparisons highlight that while our CNN approach may 

not outperform deep ensemble models designed for 

binary classification, it offers a favorable trade-off 

between accuracy, simplicity, and computational 

efficiency, making it suitable for practical cervical cancer 

screening applications. 

Despite the models demonstrating varying degrees of 

success in cervical cell classification, this study has 

several limitations that impact its overall reliability and 

practical applicability. One of the main concerns lies in 

the dataset imbalance, as the Herlev dataset contains 

more abnormal cells than normal cells, potentially 

skewing the classifier’s learning process and leading to 

biased predictions. Additionally, the absence of rigorous 

hyperparameter tuning and advanced preprocessing 

techniques may have affected the models’ performance, 

particularly for SVM and KNN, which are more sensitive 

to feature scaling and input data variability. Furthermore, 

the segmentation process, although visually acceptable 

in most cases, occasionally misidentifies nuclei 

boundaries or includes noise, reducing the quality of 

input features and affecting downstream classification 

performance. The lack of numerical metrics for 

segmentation evaluation and the exclusive reliance on 

classification metrics also weaken the overall depth of 

the study, making it difficult to comprehensively assess 

how segmentation errors propagate through the 

classification process. These limitations highlight the 

need for further refinement in both the preprocessing 
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pipeline and the choice of classification approaches to 

enhance the robustness and accuracy of future cervical 

cell classification systems. 

From a practical standpoint, the findings of this study 

hold promising implications for integrating automated 

cervical cell classification into clinical workflows. The 

CNN-based model, despite its lower accuracy compared 

to more complex ensemble methods, is computationally 

lightweight and easier to deploy, making it particularly 

suitable for use in low-resource settings such as rural 

clinics or mobile screening units where high-end 

hardware and internet connectivity may be limited. Its 

simplicity also supports faster inference times, allowing 

for real-time or near-real-time diagnostic assistance 

during cytological examinations. Integrating such a 

model into digital pathology systems or microscope-

based image acquisition tools could assist 

cytotechnologists by pre-screening slides and 

highlighting potential abnormal regions, thereby 

reducing workload and improving early detection rates. 

For future implementation strategies, collaboration with 

healthcare professionals will be essential to ensure the 

model aligns with clinical requirements, such as 

interpretability, integration with electronic health records, 

and compliance with medical device regulations. 

Additionally, further validation on larger, more diverse 

datasets and the development of user-friendly interfaces 

will be necessary steps to move from experimental 

research toward practical deployment in cervical cancer 

screening programs. 

 

5. Conclusion 

This study aims to classify cervical cell images using 

Artificial Intelligence (AI) techniques by comparing the 

performance of Convolutional Neural Networks (CNN), 

Support Vector Machines (SVM), and K-Nearest 

Neighbors (KNN). Among the three classifiers, CNN 

achieved the best overall performance, with an accuracy 

of 85%, precision of 86.7%, and sensitivity of 83%, 

indicating its strong potential for cervical cell 

classification tasks. These results suggest that 

supervised classification methods are more effective 

than unsupervised approaches in this domain, likely due 

to their ability to learn complex patterns from labeled 

data. Additionally, the lightweight CNN model used in 

this study offers a favorable balance between accuracy 

and computational simplicity, making it more suitable for 

deployment in resource-constrained clinical settings. 

However, class imbalance in the Herlev dataset remains 

a challenge, as it can bias model predictions and reduce 

generalizability. To address this, future work should 

explore data balancing techniques such as Generative 

Adversarial Networks (GANs) for synthetic sample 

generation or data augmentation strategies to enrich 

underrepresented classes. Further improvements could 

also involve hyperparameter optimization, advanced 

feature selection, and ensemble learning methods to 

boost performance across multiple evaluation metrics. 

Ultimately, expanding the dataset and validating the 

model in real clinical scenarios will be essential for 

translating these findings into practical cervical cancer 

screening solutions. 
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