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Abstract The limited availability of diverse, high-quality medical images constitutes a significant obstacle 

to training reliable deep-learning models that can be used in clinical settings. The traditional methods used 

for data augmentation generate inadequate medical photos that result in poor model performance and a 

low rate of successful generalization. This research studies the effectiveness of DCGAN cGAN CycleGAN 

and SRGAN GAN architectures through performance testing in five essential medical imaging datasets, 

including Diabetic Retinopathy, Pneumonia and Brain Tumor and Skin Cancer and Leukemia. The main 

achievement of this research was to perform an extensive evaluation of these GAN models through three 

key metrics: generation results, training loss metrics, and computational resource utilization. DCGAN 

generated stable high-quality synthetic images, whereas its generator produced losses from 0.59 

(Pneumonia) to 6.24 (Skin Cancer), and its discriminator output losses between 0.29 and 6.25. CycleGAN 

showed the best convergence potential for Diabetic Retinopathy with generator and discriminator losses 

of 2.403 and 2.02 and Leukemia with losses at 3.325 and 3.129. The SRGAN network produced high-

definition images at a generator loss of 6.253 and discriminator loss of 6.119 for the Skin Cancer dataset. 

Still, it failed to maintain crucial medical characteristics in grayscale images. GCN exhibited stable 

performance across all loss metrics and datasets. The DCGAN model required the lowest computing 

resources for 4 to 7 hours, using 0.9M and 1.4M parameters. The framework of SRGAN consumed between 

7 and 10 hours and needed 1.7M to 2.3M parameters for its operation, and CycleGAN required identical 

computational resources. DCGAN was determined as the ideal model for synthetic medical image 

generation since it presented an optimal combination of quality output and resource efficiency. The 

research indicates that using DCGAN-generated images to increase medical datasets serves as a solution 

for boosting AI-based diagnostic system capabilities within healthcare. 

Keywords Generative adversarial networks (GANs), Medical imaging, Data augmentation, Image synthesis, Deep 
learning.

1. Introduction 

Generative Adversarial Networks (GANs) have 
extended their modern approaches to medical image 
generation and augmentation to solve fundamental 
problems of data limitation and imbalance in medical 
datasets [1,2]. The driving force behind this work's 
development is that the accuracy level in diagnosing 
diseases through deep learning models is 
comparatively low, and almost all of them need labelled 
data for their training [3,4]. Obtaining a large amount of 
data part, particularly in retinopathy and the 
classification of X-ray pneumonia, is a slow, expensive 

and, in many cases, impossible process because of the 
ethical issues involved in using people's images [5,6]. 
Some basic data augmentation techniques like flipping, 
rotating, and scaling do not serve the augmented 
authentic medical images well or enhance the model's 
ability to generalize the results effectively. Hence, the 
requirement for higher-level augmentation methods 
that can produce multiple valuable medical images 
while retaining diagnostic characteristics increases 
[7,8]. However, as we can see, there are a lot of 
problems with the existing approaches for image 
generation tasks using GANs. The main issue with 
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basic GANs is that they do not converge during training 
or offer poor-quality, unrealistic images. In addition, the 
generated images may not reflect the necessary 
architecture and attributes for medical diagnosis [9,10]. 

   For instance, GANs with small or imbalanced training 
data are more likely to converge to the mode collapse, 
a scenario whereby the network synthesizes images 
that are identical or are derivable from another image, 
which is detrimental when trying to augment the 
dataset's variety or heterogeneity [11,12]. Further, the 
generated medical images have some artefacts or 
unrealistic attributes that pose challenges in clinical 
use. This GAN architecture is shown on Fig.1. involves 
two networks: the Generator Network, which 
transforms D-dimensional noise into synthetic data, 
and the Discriminator Network, which classifies data as 
fake or real. Both networks compete, improving over 
time through adversarial training [13,14,15]. 

 

   This paper addresses these limitations by leveraging 
advanced GAN architectures such as Deep 
Convolutional GAN (DC-GAN) [2,7,9,19], Conditional 
Generative Adversarial Networks (cGAN) [6,14,15], 
CycleGAN [3,13,17], and Super-Resolution GAN (SR-
GAN) [10,11,12]. DC-GAN has demonstrated its ability 
to generate high-quality images using convolutional 
neural networks, making it ideal for applications like X-
ray pneumonia image generation. Cycle-GAN 
[3,13,17], known for its capability to learn 
transformations between two domains without paired 
examples, offers a powerful approach for medical 
image-to-image translation, such as converting retinal 
fundus images to segmented vessel maps for 
retinopathy analysis. SR-GAN, designed for super-
resolution tasks, enhances the resolution of medical 
images, which is particularly useful in improving the 
clarity and diagnostic quality of low-resolution X-ray 
and retinal images. 

   The primary objective of this study is to develop a 
comprehensive framework for generating synthetic 
medical images using GANs architectures. By focusing 
on datasets such as Diabetic Retinopathy, Pneumonia, 
Brain Tumor, Skin Cancer, and Leukemia Cancer 
datasets, this research aims to create high-quality 
synthetic images that improve the performance of deep 

learning models in diagnostic tasks. The aim is to 
overcome the limitations of small, imbalanced datasets 
and produce diverse, high-resolution medical images to 
enhance AI-driven medical diagnostics' accuracy, 
robustness, and reliability. 

 

2. Literature Study 

Integrating advanced generative models into medical 

imaging continues to revolutionize the field by 

addressing challenges such as data scarcity and low-

quality images. Wang et al. [1] introduced a self-

improving generative foundation model for synthetic 

medical image generation, showing its applicability in 

diverse clinical scenarios. Kumar et al. [2] proposed a 

deep learning-based encryption scheme for medical 

images using DCGAN and virtual planet domains, 

enhancing privacy and security in medical image 

sharing while maintaining the integrity of the photos. 

Chen et al. [3] presented Cycle-GAN, an improved 

CycleGAN for liver medical image generation, which 

outperformed existing models regarding realism and 

clinical applicability for liver disease detection. Ali et al. 

[4] offered a comprehensive overview of recent 

advancements in applying GANs for medical image 

processing, detailing their effectiveness in synthetic 

image generation, segmentation, and diagnosis. 

Sherwani and Gopalakrishnan [5] provided a 

systematic literature review of deep learning 

techniques for synthetic medical image generation, 

focusing on their contributions to radiotherapy 

applications and the role of GANs in enhancing the 

precision of treatment planning. These studies 

demonstrate the substantial impact of generative 

models on medical imaging, with applications spanning 

encryption, data augmentation, and disease diagnosis. 

The utility of GANs in medical image synthesis 

continues to expand, offering promising results in 

various domains, including segmentation and disease 

diagnosis.  

   Hamghalam and Simpson [6] utilized conditional 

GANs for medical image synthesis, explicitly focusing 

on brain tumor segmentation, where their model 

demonstrated significant improvements in tumor 

delineation. Akhil et al. [7] applied DCGANs for 

synthesizing chest X-ray images, proving that GAN-

based models could effectively generate realistic 

medical images for training classifiers and enhancing 

diagnostic capabilities. Zakaria et al. [8] developed 

Medical-DCGAN, a deep convolutional GAN tailored 

for medical imaging tasks, showing its potential to 

generate high-quality medical images for various 

applications. Shah et al. [9] explored the reliability of 

deep learning for breast cancer diagnosis by 

synthesizing mammograms using DCGANs, 

Fig.  1. Architecture of GAN [1] 
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emphasizing the importance of synthetic data in 

training robust diagnostic models. Varshitha et al. [10] 

explored the use of SRGAN for high-quality medical 

image reconstruction, enhancing the resolution of 

medical images, which is crucial for accurate diagnosis 

and treatment planning. These papers highlight the 

ongoing developments in the field, with GANs and their 

variants proving effective in generating synthetic 

medical images that support various diagnostic 

applications. 

   The recent advancements in GAN-based medical 

image synthesis are underscored by their growing 

application in clinical and diagnostic contexts. Madhav 

et al. [11] applied SRGANs for the super-resolution of 

medical images, enhancing their clarity and diagnostic 

accuracy, particularly in areas like radiology. Nandal et 

al. [12] utilized ESRGAN (Enhanced Super-Resolution 

GAN) for the super-resolution of medical images, 

demonstrating its ability to generate high-resolution 

images that improve the quality of analysis and 

interpretation in medical settings. Heng et al. [13] 

proposed HLSNC-GAN, a model combining hinge loss 

and switchable normalization in CycleGAN to generate 

high-quality medical images with improved structure 

preservation, highlighting its use in disease detection 

and imaging applications. Jha and Iima [14] employed 

CycleGAN for CT to MRI image translation, a critical 

task in cross-modality medical imaging that allows 

clinicians to gain more comprehensive insights from 

different imaging modalities. Afnaan et al. [15] 

introduced a hybrid deep learning framework for 

bidirectional medical image synthesis, enhancing the 

capability to translate between different medical image 

types and further expanding the application of GANs in 

clinical diagnostics. These studies reflect the 

increasing sophistication of GAN models, which are 

becoming indispensable tools for enhancing medical 

image quality and enabling more accurate clinical 

decisions. 

   The application of generative models in medical 

imaging continues to evolve, with newer approaches 

focusing on improving image synthesis, segmentation, 

and diagnostic accuracy. Raad et al. [16] proposed a 

conditional generative learning approach for medical 

image imputation, demonstrating its effectiveness in 

recovering missing or corrupted regions in clinical 

scans, thereby enhancing diagnostic reliability and 

downstream analysis. Wang et al. [17] introduced 

CycleSGAN, a cycle-consistent and semantics-

preserving generative adversarial network for unpaired 

MR-to-CT image synthesis, which effectively handled 

cross-modality image translation, thus facilitating better 

interoperability between MR and CT images in clinical 

settings. Akbar et al. [18] critically assessed the 

limitations of diffusion models for synthesizing medical 

photos, comparing them with GANs, and demonstrated 

that GANs are superior in preventing memorization of 

images, particularly for complex tasks such as MRI and 

X-ray synthesis. Devi and Kumar [19] applied DCGAN 

for diabetic retinopathy (DR) image synthesis and 

leveraged transfer learning for DR classification, 

showing promising results in augmenting the dataset 

for DR detection, which is crucial for early diagnosis. 

Mamo et al. [20] delivers an extensive review of GAN 

development in medical imaging which discusses 

applications, difficulties and prospective avenues for 

healthcare diagnostic progression. Friedrich et al. [21] 

researched deep generative models applied to 3D 

medical image synthesis and reviewed architectural 

progress with difficulties in multiple modality volumetric 

data generation. Fard et al. [22] investigated the 

development of machine learning applications which 

synthesize interictal SPECT images by combining MRI 

and PET scans for better neurological disorder 

diagnosis capabilities. The review article by Islam et al. 

[23] studied GANs in medical imaging from various 

perspectives while evaluating their possible 

applications and describing technical obstacles to 

clinician uptake. According to Sindhura et al. [24], deep 

learning techniques and GANs present substantial 

transformative power for medical image analytics 

because they lead to better detection of tumors and aid 

disease monitoring alongside improving source data 

quantity. The clinical usefulness of deep learning was 

established when Kermany et al. [25] built an image-

driven diagnostic system which detected many 

treatable diseases, showing the substantial impact on 

healthcare effectiveness. According to the findings 

presented in these papers, the sophistication of GANs 

and deep generative models in medical imaging 

continues to advance. Medical practitioners use these 

papers to tackle fundamental tasks, including image 

synthesis, segmentation, and classification, while 

improving diagnosis precision. The field of 3D image 

generation, together with multimodal data translation, 

shows recent increases in popularity. The research 

methods yield exceptional results for cases with 

restricted or unbalanced datasets. The research 

illustrates how Artificial Intelligence changes medical 

care practices and improves diagnostic procedures for 

healthcare providers. 

 

3. Methodology 

Fig. 2. illustrates the process of medical image 

generation using various types of Generative 

Adversarial Networks (GANs). Medical datasets are 

first used to train different GAN architectures, including 

DCGAN, cGAN, CycleGAN, and SRGAN.
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A. Dataset 

Table.1 describe the different medical dataset and its 
size of images and categories of image. 

 

B. GANs (Generative Adversarial Networks) [1,3] 

GANs consist of two neural networks: a generator and 

a discriminator, which are trained simultaneously. The 

generator creates fake data resembling real data 

distribution, while the discriminator distinguishes 

between real and generated data. The process is a 

minimax game, where the generator aims to fool the 

discriminator, and the discriminator improves his ability 

to differentiate between real and fake data. The 

generator, G(z), takes a random input z (usually from a 

uniform or Gaussian distribution) and generates data 

x_fake = G(z).  The discriminator D(x) outputs the 

probability that the input is from the real data 

distribution x_real, aiming to maximize the corre(1ct 

classification of real versus fake data. The optimization 

problem for GANs is represented by the following as 

Eq. (1) [1]: 
𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺)  

=  𝐸{𝑥𝑟𝑒𝑎𝑙∼ 𝑝𝑑𝑎𝑡𝑎(𝑥)}[𝑙𝑜𝑔 𝐷(𝑥)]

+ 𝐸{𝑧 ∼ 𝑝𝑧(𝑧)} [𝑙𝑜𝑔 (1 −  𝐷(𝐺(𝑧)))] 

(1) 
 

Here, 𝑝_𝑑𝑎𝑡𝑎(𝑥) is the real data distribution, and 𝑝_𝑧(𝑧) 

is the noise distribution. The generator learns to 

minimize this objective while the discriminator 

maximizes it, leading to the adversarial dynamic that 

defines GANs. 
 

C. DC-GAN (Deep Convolutional GAN) [2,7,9,19] 

DC-GANs use convolutional layers instead of fully 

connected layers in the generator and discriminator, 

making them more suitable for image generation tasks. 

The generator architecture typically uses a series of 

transposed convolutional layers (also known as 

deconvolution layers)  to up sample noise into an 

image, while the discriminator uses regular 

convolutional layers to classify images as real or fake. 

The generator starts with a latent vector z ∈ 𝑅𝑑 which 

is projected into a high-dimensional space and then 

sampled through layers of transposed convolutionsas 

Eq. (2) [2]: 

 

𝑥𝑓𝑎𝑘𝑒 =  𝐺(𝑧) =  𝑑𝑒𝑐𝑜𝑛𝑣1 (𝑑𝑒𝑐𝑜𝑛𝑣2 (. . . (𝑑𝑒𝑐𝑜𝑛𝑣𝑛(𝑧)))) 

(2) 
The discriminator takes an input image and processes 
it through convolutional layers: 
𝐷(𝑥)  =  𝜎(𝑐𝑜𝑛𝑣1(𝑐𝑜𝑛𝑣2(. . . (𝑐𝑜𝑛𝑣𝑛(𝑥))))), where σ 

represents a sigmoid activation function that outputs a 
probability. Key innovations in DC-GANs include 
replacing pooling layers with stride convolutions and 
using batch normalization to stabilize training. The 
architecture enables GANs to generate high-quality 
images and converge faster than traditional fully 
connected GANs. 
 

D. cGAN [6,14,15] 

 

Fig.  2. Methodology Flow 

 

Generated 

Images

Train

GANs

DCGAN

GenerationMedical 

Datasets

cGAN

CycleGAN

SRGAN

Evaluation

G-Loss D-Loss

Table 1 Dataset Description 

Dataset Description Size Categories 

Diabetic 
Retinopathy 

[19,27] 

Retinal 
images for 
detecting 
diabetic 
retinopathy 
(DR) 

6993 
images 

0: No DR, 1: 
Mild DR, 2: 
Moderate DR, 
3: Severe DR, 
4: Proliferative 
DR 

Pneumonia 
[26] 

X-ray images  5,863 
images 

Pneumonia, 
Normal 

Brain Tumor 
[28] 

MRI images 
of human 
brains.  

2053 
images 

Tumors, 
Normal  

Skin Cancer 
[29] 

Dermoscopic 
images of skin 
moles. 

3297 
images 

Benign, 
Malignant 

Leukemia 
Cancer [30] 

Leukemia 
cancer 

2940 
images 

Benign, 
Early, 
Pre 
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   cGAN (Conditional Generative Adversarial Network) 
is a variant of the traditional GAN designed for tasks 
where additional information or labels are available to 
guide the generation process. cGAN introduces a 
conditional input to the generator G and the 
discriminator D, where the generator produces data 
samples conditioned on the input, and the discriminator 
attempts to distinguish between real and generated 
samples, also conditioned on the same input. The goal 
is to learn a mapping G(z, c), where z is random noise 
and c is a condition (e.g., class label), to generate 
realistic samples based on the given condition. The 
discriminator D(x, c) evaluates whether the generated 
data G(z, c) is real or fake, conditioned on c. The 
objective function for the cGAN is given by Eq. (3) [6]: 

 

𝐿_{𝑐𝐺𝐴𝑁}(𝐺, 𝐷)  =  𝐸_{𝑥 ~ 𝑝_{𝑑𝑎𝑡𝑎}(𝑥)}[𝑙𝑜𝑔 𝐷(𝑥, 𝑐)]  
+  𝐸_{𝑧 ~ 𝑝_𝑧(𝑧)}[𝑙𝑜𝑔(1 
−  𝐷(𝐺(𝑧, 𝑐), 𝑐))] 

(3) 

 

   This structure allows cGAN to generate samples that 
are not only realistic but also consistent with the 
conditioning information.  

 

E. Cycle-GAN [3,13,17] 

Cycle-GAN is a type of GAN designed for image-to-
image translation tasks where paired data (e.g., 
matching images from two domains) are not available. 
The goal is to learn mappings between two domains, 
𝑋 𝑎𝑛𝑑 𝑌, such that an image 𝑥 ∈  𝑋 can be translated 

to domain 𝑌 (and vice versa) without paired samples. 
Cycle-GAN introduces two generators, 𝐺𝑋𝑌 (which 

maps images from domain 𝑋 to domain 𝑌) and 𝐺𝑌𝑋 

(which maps images from domain Y to domain X), 
along with two discriminators, 𝐷𝑋 and 𝐷𝑦, which 

evaluate whether images belong to their respective 
domains. The innovation of Cycle-GAN lies in the  
cycle consistency loss, which ensures that if an image 
is transformed from domain X to domain 𝑌 and then 

back to domain 𝑋, it should return to the original image. 

The cycle consistency loss is defined as Eq. (4) [17]: 
 

𝐿𝑐𝑦𝑐(𝐺𝑋𝑌,𝐺𝑌𝑋) =  𝐸{𝑥 ∼ 𝑝𝑋(𝑥)} [||𝐺𝑌𝑋(𝐺𝑋𝑌(𝑥)) −  𝑥||
1

]

+ 𝐸
{𝑦 ∼ 𝑝𝑌(𝑦)}

[||𝐺
𝑋𝑌(𝐺𝑌𝑋(𝑦))

−  𝑦||
1

] 

(4) 

 

   This ensures that the learned transformations are 
reversible and maintains the structural integrity of the 
input images. 
 

F. SR-GAN (Super-Resolution GAN) [10,11,12] 

   SR-GAN is a GAN designed for image super-
resolution, i.e., converting low-resolution images into 
high-resolution versions. The generator in SR-GAN 
creates high-resolution images from low-resolution 
inputs, while the discriminator tries to distinguish 
between real high-resolution images and the generated 
ones. The generator employs a series of convolutional 
and up-sampling layers to predict a high-resolution 
image from a low-resolution input. The loss function 
includes both pixel-wise differences and perceptual 
loss, which measures the discrepancy in high-level 
feature representations between  the real and 
generated images. The overall objective function for 
SR-GAN is a combination of adversarial loss and 
content loss as Eq. (5) [12]: 
 

𝐿𝑆𝑅 − 𝐺𝐴𝑁  𝐿𝑎𝑑𝑣 +  𝜆 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ,           (5) 
 

where 𝐿𝑎𝑑𝑣 is the adversarial loss that encourages the 

generator to produce images indistinguishable from 
real high-resolution images, and 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡  is the content 

loss, often based on the perceptual features extracted 
from a pre-trained deep network like VGG. 
 

G. Parameters 

1. Generator Loss [16,17] 

The generator’s objective is to fool the discriminator 
into classifying its generated data as real. In standard 
GANs, the generator loss is derived from the minimax 
game as Eq. (6) [16]: 

 

𝐿𝐺 =  −𝐸{𝑧 ∼ 𝑝𝑧(𝑧)}[𝑙𝑜𝑔 𝐷(𝐺(𝑧))]                                (6) 

 

This loss encourages the generator to produce 
samples that the discriminator classifies as real (i.e., 
D(G(z)) → 1).  An alternative form of generator loss, 
called the "non-saturating" loss, is often used in 
practice to avoid vanishing gradients as Eq. (7) [16]: 

 

𝐿𝐺 =  𝐸{𝑧 ∼ 𝑝𝑧(𝑧)} [𝑙𝑜𝑔 (1 −  𝐷(𝐺(𝑧)))]                (7) 

 

This loss ensures that the gradients do not diminish too 
quickly, enabling more stable training. In some 
variations like Wasserstein GAN (WGAN), the 
generator loss is modified to minimize the Earth 
Mover’s Distance (EMD), improving convergence as 
Eq. (8) [17]: 

 

𝐿𝐺 =  −𝐸{𝑧 ∼ 𝑝𝑧(𝑧)}[𝐷(𝐺(𝑧))]   (8) 

 
This encourages the generator to create data that 
minimizes the Wasserstein distance between the real 
and generated data distributions. 
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2. Discriminator Loss [16,17] 

The discriminator's goal is to correctly classify real data 
as real and generated data as fake. The discriminator 
loss for a standard GAN as Eq. (9) [17]: 
 
𝐿𝐷 =  −𝐸{𝑥𝑟𝑒𝑎𝑙∼ 𝑝𝑑𝑎𝑡𝑎(𝑥)}[𝑙𝑜𝑔 𝐷(𝑥𝑟𝑒𝑎𝑙)]

− 𝐸{𝑧 ∼ 𝑝𝑧(𝑧)} [𝑙𝑜𝑔 (1 −  𝐷(𝐺(𝑧)))] 

(9) 

 

This loss maximizes the discriminator's ability to 
differentiate between real and fake data. The first term 
encourages the discriminator to classify real data 
correctly, while the second term penalizes it for 
classifying generated data as real. In WGAN, the 
discriminator (called the critic) uses a different loss to 
approximate the Wasserstein distance as Eq. (10) [17]: 

 

𝐿𝐷 =  −𝐸{𝑥𝑟𝑒𝑎𝑙∼ 𝑝𝑑𝑎𝑡𝑎(𝑥)}[𝐷(𝑥𝑟𝑒𝑎𝑙)] +  𝐸{𝑧 ∼ 𝑝𝑧(𝑧)}[𝐷(𝐺(𝑧))] 

(10) 
 

This ensures a more stable training process by 
avoiding the issues of vanishing gradients and mode 
collapse commonly seen in traditional GANs. 
 

4. Results 

Google Colab, with a T4 GPU, provides an efficient 
environment for implementing and experimenting with 
advanced deep learning algorithms such as DCGAN, 
cGAN, CycleGAN, and SRGAN. The platform offers 
free access to powerful GPUs, enabling the rapid 
training of generative models. DCGAN, cGAN 
CycleGAN, and SRGAN were implemented to explore 
various image generation and transformation tasks for 
this research. During training, key parameters such as 
Generator Loss (Error) and Discriminator Loss (Error) 
were computed to evaluate the performance of each 
model. During training, hyperparameters selected a 
batch size of 64, a learning rate of 0.0002, and 5000 
epochs. The Adam optimizer was employed to stabilize 
GAN training effectively. 
   The figure illustrates the progression of generated 
diabetic retinopathy images over epochs 1 to 5000. In 
DCGAN (Fig. 3(a)), early images are noisy and 
structurally weak, but by epoch 3000, blurry retina-like 
features begin to emerge, showing gradual 
convergence with basic vascular patterns. cGAN (Fig. 
3(b)), early images are noisy and structurally weak, but 
by epoch 3000, blurry retina-like features begin to 
emerge, showing gradual convergence with basic 
vascular patterns.  CycleGAN (Fig. 3(c)) starts with 
repetitive textures due to untrained generators but 
improves significantly after epoch 3000, successfully 
learning domain-specific transformations without 
needing paired data. SRGAN (Fig. 3(d)) initially 
produces low-quality patches but gradually enhances 

fine details and contrast, thanks to perceptual loss, 
resulting in sharper and more realistic pathological 
features by epoch 5000. Overall, SRGAN shows 
superior detail reconstruction, CycleGAN excels in 
style translation, and DCGAN provides steady but  
slower improvement in feature generation. 
 

 
 

 

 (a) 

  (a) 
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   The figure presents the epoch-wise image generation 
performance for pneumonia chest X-ray images. In 
DCGAN (Fig. 4(a)), image clarity and structure improve 
steadily from epoch 1000 onwards, with sharper lung 
regions and clearer pathological features appearing by 
epoch 5000. cGAN (Fig. 4(b)), image clarity and 
structure improve steadily from epoch 2000 onwards. 
CycleGAN (Fig. 4(c)) also shows substantial progress 
after epoch 1000, successfully translating domain-
specific features with well-formed lung structures and 
enhanced grayscale contrast by the later epoch. 
Conversely, SRGAN (Fig. 4(d)) struggles to generate 
meaningful outputs, with all epochs producing noisy, 
indistinct textures and failing to capture anatomical or 
pathological features of pneumonia, indicating poor 
convergence. DCGAN, cGAN and CycleGAN 
demonstrate effective pneumonia image generation 
with increasing training, while SRGAN underperforms 
in this medical imaging task. 

 
 

 
 

 

  (c) 

  (b) 

Fig.  3 Generation on Diabetic Retinopathy Dataset 
using (a) DCGAN (b) cGAN (c) CycleGAN (d) 
SRGAN 

 (a) 

  (c) 

  (c) 
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   The figure showcases brain tumor image generation. 
In DCGAN (Fig. 5(a)), early outputs are noisy, but by 
epoch 2000, distinct brain structures and tumor regions 
start emerging, with enhanced contrast and anatomical 
clarity by epoch 5000. cGAN (Fig. 5(b)), early outputs 
are noisy, but by epoch 3000, distinct brain structures 
and tumor regions start emerging, with enhanced 
contrast and anatomical clarity by epoch 5000. 
CycleGAN (Fig. 5(c)) exhibits similar behavior, 
progressing from repetitive patterns to realistic MRI-like 
tumor images, especially after epoch 3000, 
demonstrating its capacity for unpaired image-to-image 
translation. However, SRGAN (Fig. 5(d)) fails to 
converge, producing indistinct, noisy textures 
throughout all epochs without forming meaningful brain 
structures. Overall, DCGAN, cGAN and CycleGAN 
effectively synthesize brain tumor images over time, 
while SRGAN struggles with medical image realism in 
this context. 
 

 

 
 

 
 

 
   The figure illustrates the generation of skin cancer 
images. In DCGAN (Fig. 6(a)), image quality 

  (d) 

Fig.  4 Generation on Pneumonia Dataset using (a) 
DCGAN (b) cGAN (c) CycleGAN (d) SRGAN 

 (a) 

  (e) 

  (c) 

  (f) 

Fig.  5 Generation on Brain Tumor  Dataset using 
(a) DCGAN (b) cGAN (c) CycleGAN (d) SRGAN 
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progressively improves with clearer lesion structures, 
color textures, and skin patterns becoming prominent 
after epoch 3000, achieving realistic dermoscopic 
image synthesis by epoch 5000. cGAN (Fig. 6(b)), 
image quality progressively improves with clearer 
lesion structures, color textures, and skin patterns 
becoming prominent after epoch 4000, achieving 
realistic dermoscopic image synthesis by epoch 5000. 
CycleGAN (Fig. 6(c)), however, fails to converge 
meaningfully; initial outputs show patterned noise, and 
from epoch 4000 onward, the generator produces 
completely black images, indicating mode collapse. 
SRGAN (Fig. 6(d)) remains trapped in patterned noise 
throughout all epochs, lacking any sign of feature 
learning or structural convergence. Thus, DCGAN 
demonstrates superior capability in generating realistic 
skin cancer images, while CycleGAN and SRGAN 
underperform significantly in this task. 

 
 

 

 
 

 
 
   The figure displays leukemia cancer image synthesis 
using DCGAN, CycleGAN, and SRGAN across training 
epochs. DCGAN (Fig. 7(a)) shows early improvement 
with noise-to-patterned color transitions, and from 
epoch 3000, it begins forming cellular structures with 
improved color distribution and visual complexity by 
epoch 5000. cGAN (Fig. 7(b)) shows early 
improvement with noise-to-patterned color transitions, 
and from epoch 3000, it begins forming cellular 
structures with improved color distribution and visual 
complexity by epoch 5000. CycleGAN (Fig. 7(c)) 
follows a similar path up to epoch 4000 but then 
deteriorates into high-contrast black-and-white artifacts 
by epochs 4000–5000, indicating instability and loss of 
learned features. SRGAN (Fig. 7(d)), in contrast, 
exhibits repetitive and uninformative noisy outputs 
across all epochs, failing to model leukemia-specific 
visual features. Overall, DCGAN achieves moderate 

 (a) 

  (g) 

  (c) 

  (h) 

Fig.  6 Generation on Skin Cancer Dataset using (a) 
DCGAN (b) cGAN (c) CycleGAN (d) SRGAN 
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success in simulating leukemia cell image features, 
whereas CycleGAN suffers from instability and SRGAN 
lacks effective learning. 
 

 
 

 

 

 
 
   The loss performance of G and D was measured in 
Table 2 across five medical datasets through four GAN 
implementations, including DCGAN, cGAN, 
CycleGAN, and SRGAN. The five medical imaging 
datasets are Diabetic Retinopathy, Leukemia, Skin 
Cancer, Brain Tumor and Pneumonia. The CycleGAN 
model maintains lower loss values consistently across 
evaluations of the Diabetic Retinopathy and Leukemia 
datasets, making it more stable and offering better 
convergence than other analyzed models. The medical 
image generation benefits significantly from the 
increased stability delivered by this method. Neutral 
networks identify the SRGAN model as having top-
notch resolution capabilities that led to successful 
outcomes, especially when analyzing the Skin Cancer 
dataset, which requires high-quality image inputs. 
SRGAN produces high-resolution images effectively 
yet slows down processing times because of its 
intricate design structure. The loss values of cGAN 
remained balanced throughout all datasets, thus 
proving its usefulness in diverse medical imaging 
applications. 
   Table 3 demonstrates an analytical breakdown of 
GAN architectures DCGAN, cGAN, CycleGAN, and 
SRGAN as they operate on five medical imaging 
datasets comprising Diabetic Retinopathy, Pneumonia, 
Brain Tumor, Skin Cancer, and Leukemia Cancer. 
According to the provided table, each GAN model 
requires a specified training duration and a specific 
number of parameters when working on these 
datasets. CycleGAN and SRGAN need longer training 
and extra parameters because they execute complex 
image translation operations. The training process of 
DCGAN runs quicker while using fewer parameters, but 
cGAN training times increase moderately, and its 
parameter usage exceeds DCGAN parameters.

 (a) 

  (i) 

  (c) 

  (j) 

Fig.  7 Generation on Leukemia Cancer Dataset 
using (a) DCGAN (b) cGAN (c) CycleGAN (d) 
SRGAN 
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5. Discussion 

A. GANs  
This study aims to evaluates the performance of four 
GAN architectures—DCGAN, cGAN, CycleGAN, and 
SRGAN—across five distinct medical imaging 
datasets: Diabetic Retinopathy, Pneumonia, Brain 
Tumor, Skin Cancer, and Leukemia. These datasets 
represent diverse medical conditions, highlighting the 
importance of selecting the appropriate GAN 
architecture for each dataset's unique characteristics. 
The aim was to assess how these models handle the 
challenges posed by various medical image modalities. 
   Table 4 presents a comparative summary of studies 
using different GAN architectures for medical image 
generation. It shows the work done by various authors, 
the datasets used, the GAN types implemented, and 
the nature of each dataset. For instance, Wang et al. 
[1] focused on synthetic medical image generation 
using DCGAN and cGAN, with a focus on clinical 
imaging settings. Similarly, Chen et al. [3] utilized 
CycleGAN to generate medical images specifically for 
liver disease, while Sai Akhil et al. [7] applied DCGAN 
to chest X-ray images for synthesis. Nandal et al. [12] 

explored ESRGAN for super-resolution in medical 
images, while Jha & Iima [14] used CycleGAN for 
cross-modality synthesis (CT to MRI). The dataset 
characteristics in these studies are diverse, with some 
focusing on specific medical conditions, such as liver 
disease or chest X-rays, while others for super-
resolution or cross-modality generation. While 
proposed study importance of a multi-disease dataset 
and diverse GANs, which aims to generate synthetic 
medical images 
 
B. Model Performance 
The results in Fig. 2-6 and Table 2 show that DCGAN 
consistently produces stable and high-quality synthetic 
images, as reflected by its lower generator and 
discriminator losses compared to other models. Within 
5 hours of training, the DCGAN generated images with 
a loss value of 4.807 for the generators and 4.46 for the 
discriminators when utilizing an architectural model 
containing 1.2M parameters in the Diabetic 
Retinopathy dataset. The findings match Wang et al. 
[1] because DCGAN demonstrates efficient image 

Different 
Medical 
Datasets 

DCGAN cGAN CycleGAN SRGAN 

G Loss D Loss  G Loss D Loss  G Loss D Loss  G Loss D Loss  

Diabetic 
Retinopathy  

4.807 4.46 4.612 4.42 2.403 2.02 4.63 4.09 

Pneumonia 0.59 0.29 0.52 0.22 0.69 0.38 0.7 0.4 

Brain Tumor 0.78 0.47 0.76 0.45 1.2 0.65 1.42 0.82 

Skin Cancer 6.24 6.25 6.22 6.21 4.211 4.124 6.253 6.119 

Leukemia 
Cancer  

5.564 5.36 5.231 5.234 3.325 3.129 5.232 5.102 

 

Table 2 Comparative Analysis of GANs 

Table 3 Computational Analysis of GANs 

Different 
Medical 
Datasets 

DCGAN cGAN CycleGAN SRGAN 

Time Parameters  Time Parameters  Time Parameters  Time Parameters  

Diabetic 
Retinopathy  

5hr 1.2M 6hr 1.5M 7hr 1.8M 8hr 2.1M 

Pneumonia 4hr 0.9M 5hr 1.1M 6hr 1.4M 7hr 1.7M 

Brain Tumor 6hr 1.3M 7hr 1.6M 8hr 1.9M 9hr 2.2M 

Skin Cancer 7hr 1.4M 8hr 1.7M 9hr 2.0M 10hr 2.3M 

Leukemia 
Cancer  

6hr 1.2M 7hr 1.5M 8hr 1.7M 9hr 2.0M 

*hr=Hour, M=Millions 
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production together with quick training sessions, which 
produce both high image quality and fast training times. 
   The generator losses in Diabetic Retinopathy (2.403) 
and Leukemia (3.325) decreased when using 
CycleGAN, yet the model exhibited unstable behavior 
that matched Chen et al. [3] findings from liver disease 
datasets. cGAN operated stably across all datasets, yet 
its loss value exceeded DCGAN's ranges, as reported 
by Sai Akhil et al. [7] with chest X-ray images. The 
SRGAN failed to maintain critical clinical characteristics 
from grayscale images in Pneumonia and Brain Tumor 
datasets, thus reducing diagnostic accuracy. The same 
synthetic cross-modality impediment persists, 
according to the findings of Jha & Iima [14]. DCGAN 
achieved superior efficiency compared to the other 
models according to loss measurements and training 
time assessments (Table 3). CycleGAN maintained 
lower generator loss points at some point; however, it 
became less stable as training time stretched too long. 
High-resolution images from SRGAN remain a strong 
point of the model, but the model struggles to 
safeguard clinical characteristics visible in grayscale 
medical pictures. Data from different datasets 
demonstrates that DCGAN gives the best training 
effectiveness and image quality stability for medical 
image generation. The research findings agree with 
Wang et al. [1], Chen et al. [3] and Sai Akhil et al. [7] 
and Jha & Iima [14] regarding GAN architecture 
strengths and weaknesses for medical image 
generation. 

 

6. Conclusion 

This study aims to develop a synthetic medical image 
generator using DCGAN, cGAN, CycleGAN, and 
SRGAN across five medical datasets: diabetic 
retinopathy, pneumonia, brain tumor, skin cancer, and 
leukemia. The results showed that the DCGAN 
algorithm outperformed other models regarding 

generator and discriminator loss across most datasets, 
producing more stable and high-quality synthetic 
images. For example, DCGAN achieved the lowest 
loss values for diabetic retinopathy (G Loss: 4.807, D 
Loss: 4.46) and skin cancer (G Loss: 6.24, D Loss: 
6.25), while CycleGAN and SRGAN exhibited higher 
loss values, particularly in more complex datasets such 
as brain tumor and leukemia. Although cGAN showed 
comparable performance in simpler datasets like 
pneumonia, it lacked consistency in diverse imaging 
modalities. Additionally, DCGAN demonstrated 
superior computational efficiency by requiring the least 
training time and parameter count across all datasets. 
For instance, it generated pneumonia images in 4 
hours using only 0.9 million parameters, compared to 
SRGAN, which needed 7 hours and 1.7 million 
parameters. The proposed DCGAN framework 
balances image quality and computational efficiency, 
maintaining training durations and resource 
consumption within acceptable thresholds. This makes 
it suitable for practical deployment in medical imaging 
workflows. Moving forward, future research should 
investigate integrating attention mechanisms and 
hybrid GAN architectures to improve further the clinical 
realism and diagnostic relevance of synthetic medical 
images across diverse imaging modalities and tasks. 
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