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Abstract Breast cancer is one of the most prevalent and life-threatening diseases among women 

worldwide. Early detection of breast cancer being critical for increasing survival rates. Ultrasound image 
is commonly used for breast cancer screening due to its non-invasive, safe, and cost-effective. However, 
ultrasound images are often of low quality and have significant noise, which can hinder the effectiveness 
of classification models. This study proposes an enhanced breast cancer classification model that 
leverages transfer learning in combination with attention mechanisms to improve diagnostic performance. 
The main contribution of this research is the introduction of Dense-SASE, a novel architecture that 
combines DenseNet-121 with two powerful attention modules: Scaled-Dot Product Attention and Squeeze-
and-Excitation (SE) Block.  These mechanisms are integrated to improve feature representation and allow 
the model to focus on the most relevant regions of the ultrasound images. The proposed method was 
evaluated on a publicly available breast ultrasound image dataset, with classification performed across 
three categories: normal, benign, and malignant. Experimental results demonstrate that the Dense-SASE 
model achieves an accuracy of 98.29%, a precision of 97.97%, a recall of 98.98%, and an F1-score of 98.44%. 
Additionally, Grad-CAM visualizations demonstrated the model's capability to localize lesion areas 
effectively, avoiding non-informative regions, and confirming the model's interpretability. In conclusion, 
the Dense-SASE model significantly improves the accuracy and reliability of breast cancer classification 
in ultrasound images. By effectively learning and focusing on clinically relevant features, this approach 
offers a promising solution for computer-aided diagnosis (CAD) systems and has the potential to assist 
radiologists in early and accurate breast cancer detection. 
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I. Introduction 

Breast cancer is the second most common cancer 
globally. According to data from the International 
Agency for Research on Cancer (IARC), breast cancer 
accounts for 2.3 million cases or 23.8% of all cancer 
cases among women, with a mortality rate of 15.4%, 
resulting in approximately 666,000 deaths [1]. In 
Indonesia, breast cancer is the most prevalent type of 
cancer, affecting around 66,000 people. Early detection 
of breast cancer can significantly improve recovery 
rates and maximize patient survival [2], [3]. 

Although mammography is considered the gold 
standard for breast cancer screening, this method has 
limitations when dealing with dense breast parenchyma 
[4]. For dense breast tissue, ultrasonography (US) is a 
powerful diagnostic tool, as it can detect breast tumors 
that may be missed by mammography [5]. US uses 
high-frequency sound waves to provide 

comprehensive information about the dimensions, 
morphology, and characteristics of breast lesions in the 
form of ultrasound images [6] [7]. This method is non-
invasive and relatively affordable for people from all 
socioeconomic backgrounds [8]. However, manual 
interpretation relies heavily on radiologist expertise, 
which can lead to variability in diagnosis. Therefore, an 
advanced system is necessary to enhance the 
accuracy and objectivity of breast cancer diagnosis [9]. 

In recent years, the implementation of Computer 
Aided Diagnosis (CAD) systems has shown significant 
potential in improving breast cancer diagnosis 
accuracy [10]. Deep learning approaches, particularly 
Convolutional Neural Networks (CNNs), have proven 
effective for medical image processing [11], [12] . This 
method can automatically extract features from 
images, reducing the need for complex and time-
consuming manual feature extraction [13]. The 
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implementation of transfer learning for feature 
extraction can also improve model performance across 
various tasks, including breast cancer classification 
[14], [15]. 

In a study conducted by [16], DenseNet-121 
demonstrated superior performance compared to other 
architectures, achieving an accuracy of 87.5%. 
DenseNet incorporates direct connections between all 
layers within a block, addressing the vanishing gradient 
problem and promoting feature propagation. However, 
this model still has limitations, as all features are 
treated with equal weight, potentially reducing 
efficiency due to less relevant features. 

Incorporating attention mechanisms into dense 
units can improve model interpretability by assigning 
attention weights to each input [17]. Self-attention, one 
such mechanism, computes relationships between 
pixels globally, assigning higher weights to relevant 
image features and capturing complex patterns [18]. A 
study by [19] employed Self-Attention Random Forest 
(SARF) for breast cancer classification on 
histopathology images, achieving an accuracy of 
92.96% and an AUC of 0.9588. Another study by [20] 
combined Self-Attention (SA) with Multi-Instance 
Learning (MIL), resulting an accuracy of 91% and an 
AUC of 0.912. Heatmap analysis from the study 
indicated that the color distribution in the attention 
matrix displayed stripe-like patterns, suggesting that 
self-attention not only captures relationships between 
individual elements but also identifies global data 
patterns. 

A study by Deng [21] conducted breast cancer 
classification on mammography images by integrating 
a Squeeze-and-Excitation Block attention mechanism. 
The study demonstrated that adding this mechanism 
improved classification accuracy across several 

architectures, including Inception-V4, ResNeXt, and 
DenseNet, with results increasing from 89.97% to 
92.17%, 89.64% to 91.57%, and 89.20% to 91.79%, 
respectively. The SE Block enhances the model's 
ability to dynamically learn inter-channel relationships, 
allowing greater focus on relevant features [22]. This 
module can be applied to object detection [23], 
segmentation [24], and image classification [25]. 

To further improve model performance in medical 
image analysis, Moon [26] conducted research on 
ultrasound images using four different types of images: 
(1) original ROI images, (2) tumor images, (3) Tumor 
Shape Images (TSI), and (4) fused images. DenseNet-
121 architecture was applied to each image type, 
yielding accuracies of 86.35%, 86.35%, 82.19%, and 
89.32%, respectively. These results indicate that image 
type selection influences the model’s performance in 
breast cancer detection. 

This study aims to proposes the Dense-SASE 
model DenseNet with Scaled-Dot Product Attention 
and SE Block combining the strengths of transfer 
learning with additional attention mechanisms. 
DenseNet is selected for its ability to maintain gradients 
and extract complex features. The Scaled-Dot Product 
Attention mechanism enables the model to focus on 
important regions of the image, while Squeeze-and-
Excitation enhances relevant features, improving 
classification performance. The contribution of this 
study are: 1) implement transfer learning using 
DenseNet-121 architecture integrated with attention 
mechanisms as a novel approach for breast cancer 
classification on ultrasound images and 2) assess the 
effectiveness of attention mechanisms in focusing on 
relevant features essential for accurate breast cancer 
classification.  
This study structured as follows: section II discusses 
about the dataset used, proposed methods, 

 

Fig. 1. Flow of research 
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hyperparameter tuning, and training and evaluation 
schemes. Section III displays the results of training 
models and evaluation on testing set. This section also 
shows the result of interpretation using Grad-CAM. 
Section IV discusses the comparison of evaluation on 
testing set with other models and limitation from the 
proposed model. And the last section is section V, which 
rewrite the objectives, main findings, and future works. 
 

II. Method  
Fig. 1.  illustrates the workflow of this study. This study 
consists of several procedures, including data 
processing, model design, hyperparameter tuning, 
model training, and evaluation. 

A. Preprocessing Dataset 

This study uses the Breast Ultrasound Image (BUSI) 
dataset [27]. The dataset consists of ultrasound images 
of breast cancer obtained from 600 female patients 
aged 25 - 75 years at Baheya Hospital, Egypt. The 
ultrasound devices used to collect the dataset were 
LOGIC E9 Ultrasound and LOGIC E9 Agile Ultrasound 
System. The format of this dataset is PNG with a size 
of 500x500 pixels. Each image is accompanied by a 
class label indicating the patient’s clinical status, such 
as normal, benign, and malignant, with data 
distributions of 133, 437, and 210 images, respectively. 
For every image are resized to 256x256 pixel.  
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 Fig.  2. Sample (a) original image, (b) segmented 
image, and (c) overlayed image. 

Each image in each class is segmented to separate 
the disease object from the background. Segmentation 
is performed on the original images for each class 

using a U-Net framework [28]. The result of 
segmentation segmented image is overlaid on the 
original image to produce an overlay image. The 
merging process uses an alpha value of 0.5, 
corresponding to 50% transparency. This value is 
chosen to enhance the image representation without 
losing information from the original image. Fig shows 
the result of segmentation and overlay in each class. 

The overlay images are split into 15% for the testing 
set and 85% for the training and validation sets. The 
training and validation sets undergo Stratified K-Fold 
Cross Validation with 5 folds to ensure a more 
balanced distribution of data across each class. The 
testing set consists of 20 images from the normal class, 
66 images from the benign class, and 31 images from 
the malignant class. The detailed data distribution for 
the training and validation sets is presented in Table 1  
Data augmentation is applied to the training set to 
increase data variety and prevent model overfitting. 
The transformations include rotation range, width shift 
range, height shift range, horizontal flip, and vertical flip 
for each dataset. 

 

Table 1. Data distribution in training and validation 
sets. 

Fold Data Class 
Normal Benign Malignant 

1 Training 91 296 143 
Validation 22 75 36 

2 Training 90 297 143 
Validation 23 74 36 

3 Training 90 297 143 
Validation 23 74 36 

4 Training 90 297 144 
Validation 23 74 35 

5 Training 91 297 143 

Validation 22 74 36 

B. Model Design 

In this study, the author proposes a neural network 
model called Dense-SASE, DenseNet-121 with 
Scaled-Dot Product Attention and Squeeze-and-
Excitation. This architecture is based on transfer 
learning, utilizing DenseNet-121 as the backbone, 
originally developed by Huang [29]. This convolutional 
neural network is pretrained on the ImageNet dataset 
and is known for its dense connectivity, where each 
layer receives inputs from all previous layers in the 
same block. DenseNet-121 consists of four main dense 
blocks, each comprising multiple densely connected 
layers where every layer receives input from all 
preceding layers within the same block. This dense 
connectivity promotes feature reuse, improves gradient 
flow, and enhances model efficiency. The number of 
dense layers in each block is as follows: 6 layers in 
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Dense Block 1, 12 layers in Dense Block 2, 24 layers 
in Dense Block 3, and 16 layers in Dense Block 4, 
resulting in a total of 58 dense layers in the DenseNet-
121 architecture.  

In Dense-SASE, all layers of DenseNet-121 are 
kept frozen except the last five. This strategy leverages 
generic low-level features learned from ImageNet while 
allowing fine-tuning of high-level features specific to 
breast ultrasound classification. The model discards 
DenseNet’s original fully connected layers and 
replaces them with customized attention and 
classification layers tailored to the target dataset. To 
better capture spatial relationships between features, 
the model integrates a Scaled-Dot Product Attention 
mechanism, originally introduced by Vaswani [30] in 
the transformer architecture. This attention block helps 
the model focus on spatially relevant features while 

reducing noise and redundant activations. Following 

spatial refinement, channel-wise attention is applied 
through an SE Block, which enhances the model's 
ability to focus on the most informative feature 
channels [22]. Fig. 3a. illustrates the architecture of 
Dense-SASE. 

The output features from DenseNet-121 are 
projected into three representations query, key, and 
value using trainable weights. The attention scores are 
computed by performing a matrix multiplication 

between the query and the transpose of the key as 
formulated in Eq (1), resulting in an attention map that 

reflects the relationships between spatial locations 
within the feature map [30]. These scores are then 
normalized using the softmax function to ensure they 
represent probability values as illustrated in Eq. (2) 

[30]. The final output is computed as the weighted sum 
of V, enhancing important spatial features while 
maintaining original context. The attention output is 
then added back to the original input (residual 
connection), improving spatial expressiveness without 
discarding previously learned features as represented 
in Eq. (3) [30]. Fig. 3b. illustrates the structure of 

Scaled-Dot Product Attention.  

𝑆𝑐𝑜𝑟𝑒 (𝑄, 𝐾) =
𝑄𝐾𝑇

√𝑑𝑘

 (1) 

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) (2) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝛼𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (3) 

where 𝑄 represents the information being queried or 

sought after in the attention mechanism. 𝐾 corresponds 

to the context or information that the model compares 
the query to in order to find relevant relationships. 𝑉 

contains the actual information that is passed through 
the attention mechanism and 𝑑𝑘 means the 

 
(a) 

 
 

(b) 
 

(c) 
Fig.  3. Structure of (a) Dense-SASE, (b) Scaled Dot-Product Attention, and (b) SE Block. 
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dimensionality of the key vectors and is used for 
normalization.  

Following spatial refinement, channel-wise 
attention is applied through an SE Block, which 
enhances the model's ability to focus on the most 
informative feature channels. The input features are 
compressed into a 1D representation using Global 
Average Pooling (GAP) as formulated in Eq. (4) [22]. 

This compressed representation is then processed 
through two dense layers. The first dense layer applies 
the ReLU activation function to capture non-linear 
relationships between channels as illustrated in Eq. (5) 

and the second dense layer uses a sigmoid activation 
function to generate a channel attention map as 
illustrated in Eq. (6) [22]. This attention map is then 

multiplied by the input features, amplifying relevant 
channels while suppressing less important ones as 
represented in Eq. (7) [22]. This process allows the 

model to amplify important channels and suppress less 
relevant ones, making the classification process more 
robust, especially in subtle cases. Fig.  3. presents the 
illustration of the SE Block. 

𝑧𝑐 =
1

𝐻 × 𝑊
 ∑ ∑ 𝑋𝑐,𝑖,𝑗

𝑊

𝑗=1

𝐻

𝑖=1

 (4) 

𝑠 = 𝛿(𝑊1𝑧) (5) 

𝑎 = 𝜎(𝑊2𝑠) (6) 

�̃�𝑐 = 𝑠𝑐 ∙ 𝑋𝑐  (7) 

where 𝑧𝑐 represent the global context or average value 

of the feature map for a specific channel 𝑐. 𝐻 means 

height and 𝑊 means width of the map. Specifically, 𝑋𝑐 

refers to the feature map at 𝑐. 𝛿 represent ReLU and 𝜎 

represent sigmoid. 

After passing through the SE Block, the features are 
processed using GAP to reduce spatial dimensions, 
resulting in a one-dimensional vector that represents 
the overall feature set. This vector passes through a 
Dense layer with ReLU activation, followed by Batch 
Normalization and Dropout to improve training stability 
and prevent overfitting. The final output layer is a Dense 
layer with 3 neurons and softmax activation, producing 
class probabilities for the three target classes: normal, 
benign, and malignant. 

C. Hyperparameter Tuning 

Hyperparameter tuning is performed to find the optimal 
combination of parameters, aiming to maximize the 
model’s performance in classification. Table 2. 
presents the initial hyperparameters used before the 
tuning process. Hyperparameter tuning is conducted 
on several components, including optimizer type, 
learning rate, and dropout rate. In the optimizer type, 
we will experiment using Adam, SGD, and RMSprop. 
The learning rate will be experiment for values of 0.001, 

0.0001, and 0.00001. Meanwhile, the dropout value will 
be experiment for values of 0.3, 0.4, and 0.5. The 
method used is Bayesian Optimization because it is 
efficient in exploring the parameter space with fewer 
trials by using a probabilistic approach to predict the 
most promising combination of parameters based on 
previous results [31]. The best-performing parameters 
obtained from this process will be used during the 
training of the proposed model.  

Table 2. Initial hyperparameter values. 

Hyperparameter Value 

Batch size 32 
Activation function Softmax 

Loss Function Categorical Crossentropy 
Epoch 30 

Optimizer Adam 
Learning rate 0.001 
Dropout rate 0.5 

The training process will be conducted on the 
neural network model using the BUSI dataset. The 
training is performed on the training set with overlay 
images as input. To ensure the neural network remains 
in an optimal state, validation is carried out at the end 
of each epoch to prevent underfitting or overfitting. 
D. Evaluation 

Evaluation is conducted to measure the performance 
of the proposed model. A confusion matrix is employed 
to compare the classification algorithm's performance 
with the actual classification results [32].  

1. Accuracy 
Accuracy is a type of metric that represents the ratio of 

correctly classified data to the total amount of data. In 

medical diagnostics, a high accuracy does not 

necessarily indicate good performance in detecting 

malignant/benign cases. Clinically, this could lead to 

undetected cancer, delaying treatment and affecting 

prognosis. Eq.  (8) represents the formula for accuracy 

in class 𝑖, while Eq. (9) represents the formula for 

macro accuracy [33] 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃𝑖

𝑚
𝑖

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝐹𝑃𝑖)𝑚
𝑖

 (8) 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑚
 

∑ 𝑇𝑃𝑖
𝑚
𝑖

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝐹𝑃𝑖)𝑚
𝑖

 (9) 

where 𝑚 means the total number of classes, 𝑇𝑃𝑖 (True 

Positive) means the number of correctly predicted 
samples that actually belong to class 𝑖. 𝐹𝑁𝑖 (False 

Negative) means the number of actual samples from 
class 𝑖 that were incorrectly predicted as another class. 

𝐹𝑃𝑖 (False Positive) means the number of samples from 

other classes that were incorrectly predicted as class 𝑖. 

2. Precision 

Precision is a metric used to measure how many of the 
positive predictions are actually correct compared to 
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the total positive predictions made. In a clinical, 
precision is particularly important for minimizing false 
positives. A high precision for the malignant/benign 
class implies that most predictions labeled as cancer 
are correct, reducing unnecessary patient anxiety, 
additional imaging, or biopsies. Thus, high precision 
enhances diagnostic trust and efficiency in healthcare 
systems. Eq. (10) represents the precision formula for 

class 𝑖. Eq.  11 represents the macro precision formula, 

which calculates the average precision across all 
classes [33]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 (10) 

𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑚
𝑖

𝑚
(11) 

3. Recall 

Recall is a metric used to measure how many correct 
positive predictions are made relative to the total actual 
positives. Clinically, recall is critical in ensuring that all 
cases of interest, especially cancer, are detected. High 
recall in the cancer category means the model can 
detect most cancer cases, minimizing the risk of false 
negatives. Therefore, in cancer screening and 
diagnosis, recall is often prioritized to ensure sensitivity 
and early intervention. Eq. (12) represents the recall 

formula for class 𝑖. Eq. (13) represents the macro recall 

formula, which averages the recall across all classes 
[33]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

(12) 

𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑚
𝑖

𝑚
(13) 

4. F1-Score 

F1-Score is a metric that calculates the harmonic mean 
of precision and recall. In a medical diagnosis context, 
the F1-score is essential when both false positives and 
false negatives must be minimized. A balanced F1-
score indicates that the model maintains an effective 
trade-off between correctly identifying positive cases 
and avoiding incorrect alerts. This balance is crucial for 
clinical decision support systems where both 
underdiagnosis and overdiagnosis carry significant 
risks. Eq.  (14) represents the F1-Score formula for 

class 𝑖 and Eq.  (15) represents the macro F1-Score 

formula, averaging the F1-Scores across all classes 
[33]. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
 (14) 

𝑀𝑎𝑐𝑟𝑜 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
∑ 𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑖

𝑚
𝑖

𝑚
 (15) 

III. Result 
A. Hyperparameter Tuning 

Hyperparameter tuning is performed before training to 
find the optimal combination of parameters, aiming to 

enhance model performance in classification tasks. This 
process focuses on improving model generalization by 
adjusting key parameters. The first experiment tests 
different optimizers to evaluate their effect on the 
proposed model’s performance. Based on the results 
shown in Fig. 4, the choice of optimizer significantly 
impacts the model’s accuracy and loss. The experiment 
reveals that SGD achieves the highest validation 
accuracy, reaching 96.97%, with a relatively low loss of 
0.1415. The momentum mechanism in SGD helps the 
model overcome local minima, making it more effective 
in generalizing on validation data. Although SGD 
converges slower than Adam, it remains more stable 
during the final epochs, leading to better generalization 
performance. 

 

(a) (b) 

 

(c) (d) 

 

(e) (f) 

Fig. 4. Graph of accuracy and loss for three 
experiments: (a) and (b) optimizer; (c) and (d) 
learning rate; (e) and (f) dropout rate. 

The second experiment was conducted to evaluate 
the effect of different learning rates. Based on the results 
shown in Fig. 4., a learning rate of 0.001 provided the 
best performance in terms of accuracy and loss. This 
value is large enough to accelerate learning while 
maintaining stable convergence, resulting in high 
accuracy and low loss.  
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The third experiment aimed to evaluate the effect of 
different dropout values on the proposed model. Based 
on the results shown in Fig. 4, dropout rate of 0.3 
provided the best accuracy with lower and more stable 
loss. The model achieved high validation accuracy with 
relatively fast convergence due to a balance between 
learning important features and regularization. In the 
loss graph, the model also showed more stability and a 
consistent downward trend over time, indicating that the 
model generalizes well without overfitting. 

After hyperparameter tuning, the model was trained 
using the best hyperparameters obtained. Table 3.  
presents the hyperparameters resulting from the tuning 
process.  

Table 3. Hyperparameter tuning. 

Hyperparameter Value 

Batch size 32 
Activation function Softmax 

Loss Function Categorical Crossentropy 
Epoch 100 

Optimizer SGD 
Learning rate 0.001 
Dropout rate 0.3 

B. Performance of the Dense-SASE Model 

The training process of the Dense-SASE model takes 9 
seconds per epoch. Each epoch includes a validation set 
to evaluate the model during training. Based on the Fig.  
5. , the accuracy and loss graphs produced during the 
training process demonstrate good performance. The 
training accuracy increased from 38.79% in the first 
epoch to 93.41% by the 150th epoch. Validation 
accuracy also showed an upward trend, rising from 
34.09% in the first epoch to 95.45% in the final epoch. 
This indicates that the model can generalize well to new 
data. Meanwhile, the training loss steadily decreased 
from 1.4054 at the start to 0.2566 by the last epoch and 
the validation loss dropped from 1.5659 to 0.1781, 
suggesting that the model successfully avoided 
overfitting. 

Evaluation was also conducted on the testing 
dataset, with results shown in  Table 5. and confusion 
matrix shown in Fig. 6. The Dense-SASE model 
demonstrated excellent performance, achieving an 
accuracy of 98.20%, indicating that the model accurately 
classified almost all samples in the dataset. From a 
medical perspective, the high precision (97.97%) 
minimizes false positives, reducing patient anxiety and 
unnecessary interventions. The high recall (98.98%) 
ensures most true cases are detected, critical for early 
and accurate diagnosis. The balanced F1-score 
(98.44%) indicates the model is both safe and effective 
for clinical decision support. In a clinical context, such 
performance implies a system that can significantly 
support physicians in early and accurate disease 

detection particularly vital in conditions like cancer, 
where early intervention can drastically improve 
prognosis. 

Table 4. False prediction from Dense-SASE. 

Label Prediction Image 

Benign Malignant 

 
Benign Malignant 

 

 

In this study, two samples from the benign class were 
incorrectly predicted as malignant, shown in Table 4. 
This type of error can have significant implications in a 
clinical setting, potentially leading to unnecessary stress 
for patients and unneeded medical procedures. A closer 
examination of these misclassified images may reveal 
common visual features such as irregular textures or 
blurred boundaries that resemble malignant 
characteristics.  

C. Analysis of Attention Mechanism 

Experiments were also conducted to evaluate the impact 
of using attention mechanisms. The experiments 
involved four model configurations: (1) DenseNet-121; 
(2) DenseNet-121 with Scale-Dot Product Attention; (3) 
DenseNet-121 with Squeeze-and-Excitation (SE) Block; 
and (4) DenseNet-121 with both Scale-Dot Product 
Attention and Squeeze-and-Excitation (SE) Block. The 
comparison aimed to analyze how the addition of 
attention mechanisms improves model performance. 
The training process was carried out on all four models 
using the same parameters to ensure fair and objective 
results.  

It can be seen in Fig.  5.  that the Dense-SASE 
model demonstrates faster convergence compared to 
other models and a smaller gap between training and 
validation accuracy. This dual-attention setup not only 
improves feature extraction but also reduces 
redundancy in learned representations. Consequently, 
the model avoids over-relying on less meaningful 
features, contributing to better generalization and 
mitigating overfitting. Therefore, it can be concluded that 
incorporating attention mechanisms into the DenseNet-
121 model improves performance. Fig. 5  also shows a 
comparison of the loss curves during training for the four 
tested models. The graph reveals that the loss remains 
persistently fluctuating in all models despite continuous 
improvement in accuracy. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 
 

(g) (h) 

Fig.  5. Comparison of accuracy and loss graph for 
four models: (a) and (b) represent Model 1; (c) and 
(d) represent Model 2; (e) and (f) represent Model 3; 
(g) and (h) represent Model 4. 

This prolonged fluctuation indicates that the models 
face challenges in achieving stable convergence, which 
may be driven by several technical factors. 
Nevertheless, it can be observed that the Dense-SASE 
model demonstrates the best performance, with a faster 
decline in loss and the lowest final loss among all 
models. The amplitude of fluctuations in the last few 
epochs is also smaller and more stable. This proves that 
integrating two types of attention mechanisms helps the 
model endure instability and continue learning from data. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Fig. 6. Comparison of classification metrics and 
confusion matrix for four models: (a) and (b) 
represent Model 1; (c) and (d) represent Model 2; 
(e) and (f) represent Model 3; (g) and (h) represent 
Model 4. 

After the training process, each model was tested 
using the BUSI dataset testing set. Based on the 
evaluation results in Table 5. the Dense-SASE model 
achieved the best performance among all tested 
models. The proposed model also achieved an optimal 
balance between precision and recall. The integration of 
Scaled-Dot Product Attention and Squeeze-and-
Excitation (SE) Block plays a significant role in this 
improvement. The Scaled-Dot Product Attention allows 
the model to focus on the most relevant spatial features 
by dynamically adjusting the importance of different 
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regions within the feature map, while the SE Block 
adaptively recalibrates feature importance across 
channels. This ensures that even subtle yet crucial 
patterns are highlighted, improving the model’s ability to 
differentiate between classes an essential factor in 
medical image classification tasks, such as 
distinguishing between normal, benign, and malignant 
breast ultrasound images.  

To statistically verify whether there are significant 
performance differences among the evaluated models, 
a one-way ANOVA test was conducted on the validation 
F1-scores. The analysis resulted in an F-statistic of 8.98 
and a p-value of 7.97 × 10⁻⁶, indicating a statistically 

significant difference (p < 0.05) among the models. This 
finding implies that the variations in model design, 
including attention and recalibration modules, contribute 
to measurable changes in classification matrix, 
warranting further exploration through post-hoc analysis 
to identify which models differ significantly from others. 

 

IV. Discussion 

This study utilizes Grad-CAM (Gradient-weighted 
Class Activation Mapping) developed by Selvaraju [34] 
to interpret how the model makes classification 
decisions by visualizing key areas that influence 
predictions. Grad-CAM generates an activation map in 
the form of a heatmap, highlighting the regions of the 
image that contribute most to the classification 
outcome. Based on the Grad-CAM results shown in 
Fig. 7., the proposed model successfully highlights key 
areas around abnormal tissue in the ultrasound 
images. In the malignant class, the model effectively 
focuses on regions with irregular textures and indistinct 
boundaries characteristics typical of malignant tissue. 
The heatmap is sharper and more concentrated on the 
core area of the abnormality. Thus, the Grad-CAM 
interpretation not only increases trust in the model's 
predictions but also demonstrates that the Dense-
SASE model has   stronger feature understanding, 
aligning more closely with the clinical reasoning of 
doctors when analyzing breast cancer ultrasound 
images  

Karhtik et al [27] propose a Stacking Ensemble with 
custom CNN architectures. The model has achieved a 
misclassification rate of 7.85%. Another study by [28] 
used VGG-16 to create high-speed classification 
model, resulting an accuracy of 90.12 with a loss of 
0.2641. The model's performance varies significantly 
across different classes, suggesting an imbalance in 
learning or insufficient feature representation for certain 
categories. A study by [29] propose an Ensemble Deep 
Convolutional Neural Network (EDCNN) that combines 
MobileNet and Xception models. However, the model 
still exhibits moderate accuracy levels across datasets, 

indicating room for improvement in its generalization 
and class-wise stability. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 7. Overlay image and Grad-CAM visualization 
for two labels: (a) and (b) benign; (c) and (d) 
malignant. 

[30] propose a hybrid CAD system combining 
AlexNet, Boruta-SHAP, and Random Forest for breast 
cancer classification. However, the use of pre-trained 
features still limits class discrimination, particularly for 
subtle differences in ultrasound images. A study by [31] 
uses deep hybrid CNN, particularly the ShuffleNet-
ResNet scheme. Nevertheless, despite the strong 
performance, the model's accuracy still depends on the 
quality and size of the dataset, and there is room for 
improvement in generalizing to larger and more diverse 
datasets. Another study by [32] proposes model using 
meta-learning framework with multiple CNN models, 
achieving 90% accuracy on the BUSI dataset. 
However, the model's complexity stemming from a high 
number of trainable parameters—and the limited size 
and diversity of the dataset represent notable 
limitations. 

Based on Table 5.  the proposed model 
demonstrates superior performance compared to 
previous methods. It achieves an accuracy of 98.29%, 
precision of 97.97%, recall of 98.98%, and an F1-score 
of 98.44%, consistently outperforming other models. 
Overall, the Dense-SASE model proves to be more 
effective and efficient in capturing patterns from 
ultrasound images. It also maintains a balanced 
performance across precision, recall, and F1-score, 
making it a robust solution for breast cancer 
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classification. The Grad-CAM interpretation provides 
deeper insight into the key areas the model focuses on 
during classification. Based on the generated heatmap 
visualization, the Dense-SASE model tends to pay 
more attention to dense tissue areas and distinctive 
textures commonly associated with malignant tumors. 
This indicates that the model not only memorizes 
surface-level patterns but also identifies essential 
features contributing to classification decisions. These 
findings strengthen the argument that the Dense-SASE 
approach offers more transparent and trustworthy 
interpretability. 

However, despite its strong performance, several 
limitations should be addressed. One key limitation lies 
in the reliance on the BUSI dataset, which, although 
publicly available, may not fully represent the diversity 
of clinical cases encountered in real-world scenarios. 
The dataset’s relatively limited size and class 
imbalance could introduce bias and affect the model’s 
ability to generalize. Additionally, the model 
architecture, while powerful, may be sensitive to 
variations in image acquisition settings, such as 
contrast and noise levels inherent in ultrasound 
imaging. Another limitation observed during training is 
the fluctuating trend in the loss and accuracy curves, 
suggesting that the model may still experience 
instability during optimization. This could be attributed 
to the learning rate settings, data variability, or the 
complexity of the architecture. Smoother convergence 
could potentially be achieved by fine-tuning 
hyperparameters or employing learning rate 
schedulers. Furthermore, the interpretability of the 
model is currently limited to Grad-CAM visualizations. 
While Grad-CAM provides valuable spatial insights, 
relying solely on this method may restrict the depth of 
understanding regarding the model's decision-making 

process. Future work could incorporate additional 
interpretability techniques, such as SHAP or LIME, to 
provide more comprehensive explanations and 
enhance trust in clinical applications 

Therefore, future work should consider external 
validation using datasets from different populations and 
imaging devices to assess the model’s robustness. 
Moreover, incorporating more advanced data 
augmentation techniques, exploring ensemble 
methods, or experimenting with lighter architectures 
could further enhance performance. Addressing these 
limitations openly not only improves the transparency 
and credibility of the study, but also sets a solid 
foundation for future research to advance breast 
cancer detection technology. 

 
V. Conclusion 

In this study, the primary aim was to develop a robust 
deep learning model for breast cancer classification 
using ultrasound images by enhancing DenseNet-121 
with Scaled-Dot Product Attention and Squeeze-and-
Excitation, resulting in the Dense-SASE model. The 
main findings show that Dense-SASE outperforms other 
models, achieving an accuracy of 98.29%, precision of 
97.97%, recall of 98.98%, and an F1-score of 98.44%, 
indicating excellent classification capability. An 
additional finding is that Grad-CAM visualizations 
revealed the model's ability to focus on clinically relevant 
tissue areas, enhancing its interpretability. Despite these 
results, the training process showed some fluctuations, 
suggesting room for improvement in training stability. 
For future work, expanding the dataset, applying more 
advanced augmentation techniques, and exploring 
alternative attention mechanisms may further enhance 
model performance and generalizability in real-world 
clinical settings. 

Table 5. The comparison of evaluation metrics between Dense-SASE and other model. 

Model Metric (%) 

Accuracy Precision Recall F1-Score 

CNN [26] 88.90 91.00 88.80 89.20 

Ensemble CNN [35] 92.15 92,26 92,17 92,21 

VGG16 + CNN [36] 90.12 81,00 77,00 79,00 

Deep CNN [37] 87.82 87,33 85,33 86,00 

AlexNet + Random Forest [38] 96.10 96.30 96.20 96.20 

ResNet + ShuffleNet [39] 92.10 90.10 91.20 90.60 

DenseNet + Inception + ResNet50 [40] 90.00 90.00 89.50 89.50 

DenseNet-121 86.32 87.30 91.34 87.95 

DenseNet-121 + Scaled-Dot Product 
Attention 

90.59 90.12 93.87 91.44 

DenseNet-121 + SE Block 92.30 92.41 94.88 93.25 

Dense-SASE (Proposed Model) 98,29 97,97 98,98 98,44 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.779
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 611-623                                                e-ISSN: 2656-8632 

 

Manuscript received March 8, 2024; Accepted May 5, 2025; date of publication May 9, 2025 

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.779 

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 621               

Acknowledgment 

The authors would like to express sincere gratitude to 
Universitas Sebelas Maret for providing research 
funding through the Hibah Riset Group scheme as 
stipulated in contract No. 371/UN27.22/PT.01.03/2025. 
We would also like to thank the Faculty of Information 
Technology and Data Science for the invaluable support 
and resources provided throughout this research. The 
facilities, academic environment, and continuous 
encouragement from faculty members have significantly 
contributed to the completion of this work. This study 
would not have been possible without the institution's 
dedication to fostering research and innovation in the 
field of information technology and data science 

 

References  

[1] International Agency for Research on Cancer 
(IARC), “Global Cancer Observatory: Cancer 
Today,” 
https://gco.iarc.fr/today/en/dataviz/pie?mode=ca
ncer&group_populations=1&cancers=39&types=
0. 

[2] P. B. Gordon, “The Impact of Dense Breasts on 
the Stage of Breast Cancer at Diagnosis: A 
Review and Options for Supplemental 
Screening,” Current Oncology, vol. 29, no. 5, pp. 
3595–3636, May 2022, doi: 
10.3390/curroncol29050291. 

[3] M. Rawashdeh et al., “Breast density awareness 
and cancer risk in the UAE: Enhancing Women’s 
engagement in early detection,” Radiography, 
vol. 31, no. 1, pp. 350–358, Jan. 2025, doi: 
10.1016/j.radi.2024.12.012. 

[4] Z. He et al., “A review on methods for diagnosis 
of breast cancer cells and tissues,” Cell Prolif, vol. 
53, no. 7, Jul. 2020, doi: 10.1111/cpr.12822. 

[5] W. A. Berg, “Reducing Unnecessary Biopsy and 
Follow-up of Benign Cystic Breast Lesions,” 
Radiology, vol. 295, no. 1, pp. 52–53, Apr. 2020, 
doi: 10.1148/radiol.2020200037. 

[6] S. A. Alshoabi, A. A. Alareqi, F. H. Alhazmi, A. A. 
Qurashi, A. M. Omer, and A. M. Hamid, “Utility of 
Ultrasound Imaging Features in Diagnosis of 
Breast Cancer,” Cureus, Apr. 2023, doi: 
10.7759/cureus.37691. 

[7] R. Iacob et al., “Evaluating the Role of Breast 
Ultrasound in Early Detection of Breast Cancer in 
Low- and Middle-Income Countries: A 
Comprehensive Narrative Review,” 
Bioengineering, vol. 11, no. 3, p. 262, Mar. 2024, 
doi: 10.3390/bioengineering11030262. 

[8] A. A. Bhatt, D. H. Whaley, and C. U. Lee, 
“<scp>Ultrasound‐Guided</scp> Breast 

Biopsies,” Journal of Ultrasound in Medicine, vol. 

40, no. 7, pp. 1427–1443, Jul. 2021, doi: 
10.1002/jum.15517. 

[9] O. Díaz, A. Rodríguez-Ruíz, and I. Sechopoulos, 
“Artificial Intelligence for breast cancer detection: 
Technology, challenges, and prospects,” Eur J 
Radiol, vol. 175, p. 111457, Jun. 2024, doi: 
10.1016/j.ejrad.2024.111457. 

[10] C. Trepanier, A. Huang, M. Liu, and R. Ha, 
“Emerging uses of artificial intelligence in breast 
and axillary ultrasound,” Clin Imaging, vol. 100, 
pp. 64–68, Aug. 2023, doi: 
10.1016/j.clinimag.2023.05.007. 

[11] J. Egger et al., “Medical deep learning—A 
systematic meta-review,” Comput Methods 
Programs Biomed, vol. 221, p. 106874, Jun. 
2022, doi: 10.1016/j.cmpb.2022.106874. 

[12] M. Chaieb, M. Azzouz, M. Ben Refifa, and M. 
Fraj, “Deep learning-driven prediction in 
healthcare systems: Applying advanced CNNs 
for enhanced breast cancer detection,” Comput 
Biol Med, vol. 189, p. 109858, May 2025, doi: 
10.1016/j.compbiomed.2025.109858. 

[13] L. Alzubaidi et al., “Review of deep learning: 
concepts, CNN architectures, challenges, 
applications, future directions,” J Big Data, vol. 8, 
no. 1, p. 53, Mar. 2021, doi: 10.1186/s40537-021-
00444-8. 

[14] Y. Wang, E. J. Choi, Y. Choi, H. Zhang, G. Y. Jin, 
and S.-B. Ko, “Breast Cancer Classification in 
Automated Breast Ultrasound Using Multiview 
Convolutional Neural Network with Transfer 
Learning,” Ultrasound Med Biol, vol. 46, no. 5, pp. 
1119–1132, May 2020, doi: 
10.1016/j.ultrasmedbio.2020.01.001. 

[15] T. Choudhary, V. Mishra, A. Goswami, and J. 
Sarangapani, “A transfer learning with structured 
filter pruning approach for improved breast 
cancer classification on point-of-care devices,” 
Comput Biol Med, vol. 134, p. 104432, Jul. 2021, 
doi: 10.1016/j.compbiomed.2021.104432. 

[16] Z. Cao, L. Duan, G. Yang, T. Yue, and Q. Chen, 
“An experimental study on breast lesion detection 
and classification from ultrasound images using 
deep learning architectures,” BMC Med Imaging, 
vol. 19, no. 1, p. 51, Dec. 2019, doi: 
10.1186/s12880-019-0349-x. 

[17] T. Zhou, X. Ye, H. Lu, X. Zheng, S. Qiu, and Y. 
Liu, “Dense Convolutional Network and Its 
Application in Medical Image Analysis,” Biomed 
Res Int, vol. 2022, no. 1, Jan. 2022, doi: 
10.1155/2022/2384830. 

[18] X. Li et al., “Deep Learning Attention Mechanism 
in Medical Image Analysis: Basics and Beyonds,” 
International Journal of Network Dynamics and 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.779
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 611-623                                                e-ISSN: 2656-8632 

 

Manuscript received March 8, 2024; Accepted May 5, 2025; date of publication May 9, 2025 

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.779 

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 622               

Intelligence, pp. 93–116, Mar. 2023, doi: 
10.53941/ijndi0201006. 

[19] J. Li, J. Shi, J. Chen, Z. Du, and L. Huang, “Self-
attention random forest for breast cancer image 
classification,” Front Oncol, vol. 13, Feb. 2023, 
doi: 10.3389/fonc.2023.1043463. 

[20] Z. Li, L. Yuan, H. Xu, R. Cheng, and X. Wen, 
“Deep Multi-Instance Learning with Induced Self-
Attention for Medical Image Classification,” in 
2020 IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM), IEEE, 
Dec. 2020, pp. 446–450. doi: 
10.1109/BIBM49941.2020.9313518. 

[21] J. Deng, Y. Ma, D. Li, J. Zhao, Y. Liu, and H. 
Zhang, “Classification of breast density 
categories based on SE-Attention neural 
networks,” Comput Methods Programs Biomed, 
vol. 193, p. 105489, Sep. 2020, doi: 
10.1016/j.cmpb.2020.105489. 

[22] J. Hu, L. Shen, and G. Sun, “Squeeze-and-
Excitation Networks,” in 2018 IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition, IEEE, Jun. 2018, pp. 7132–7141. 
doi: 10.1109/CVPR.2018.00745. 

[23] K. Fukitani et al., “3D object detection using 
improved PointRCNN,” Cognitive Robotics, vol. 
2, pp. 242–254, 2022, doi: 
10.1016/j.cogr.2022.12.001. 

[24] X. Zhang et al., “SERNet: Squeeze and Excitation 
Residual Network for Semantic Segmentation of 
High-Resolution Remote Sensing Images,” 
Remote Sens (Basel), vol. 14, no. 19, p. 4770, 
Sep. 2022, doi: 10.3390/rs14194770. 

[25] K. Munishamaiaha et al., “Robust Spatial–
Spectral Squeeze–Excitation AdaBound Dense 
Network (SE-AB-Densenet) for Hyperspectral 
Image Classification,” Sensors, vol. 22, no. 9, p. 
3229, Apr. 2022, doi: 10.3390/s22093229. 

[26] W. K. Moon, Y.-W. Lee, H.-H. Ke, S. H. Lee, C.-
S. Huang, and R.-F. Chang, “Computer‐aided 

diagnosis of breast ultrasound images using 
ensemble learning from convolutional neural 
networks,” Comput Methods Programs Biomed, 
vol. 190, p. 105361, Jul. 2020, doi: 
10.1016/j.cmpb.2020.105361. 

[27] W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. 
Fahmy, “Dataset of breast ultrasound images,” 
Data Brief, vol. 28, p. 104863, Feb. 2020, doi: 
10.1016/j.dib.2019.104863. 

[28] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: 
Convolutional Networks for Biomedical Image 
Segmentation,” 2015, pp. 234–241. doi: 
10.1007/978-3-319-24574-4_28. 

[29] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. 
Weinberger, “Densely Connected Convolutional 

Networks,” in 2017 IEEE Conference on 
Computer Vision and Pattern Recognition 
(CVPR), IEEE, Jul. 2017, pp. 2261–2269. doi: 
10.1109/CVPR.2017.243. 

[30] A. Vaswani et al., “Attention is all you need,” in 
Proceedings of the 31st International Conference 
on Neural Information Processing Systems, in 
NIPS’17. Red Hook, NY, USA: Curran Associates 
Inc., 2017, pp. 6000–6010. 

[31] V. Nguyen, “Bayesian Optimization for 
Accelerating Hyper-Parameter Tuning,” in 2019 
IEEE Second International Conference on 
Artificial Intelligence and Knowledge Engineering 
(AIKE), IEEE, Jun. 2019, pp. 302–305. doi: 
10.1109/AIKE.2019.00060. 

[32] I. Markoulidakis, I. Rallis, I. Georgoulas, G. 
Kopsiaftis, A. Doulamis, and N. Doulamis, 
“Multiclass Confusion Matrix Reduction Method 
and Its Application on Net Promoter Score 
Classification Problem,” Technologies (Basel), 
vol. 9, no. 4, p. 81, Nov. 2021, doi: 
10.3390/technologies9040081. 

[33] A. Tharwat, “Classification assessment 
methods,” Applied Computing and Informatics, 
vol. 17, no. 1, pp. 168–192, Jan. 2021, doi: 
10.1016/j.aci.2018.08.003. 

[34] R. R. Selvaraju, M. Cogswell, A. Das, R. 
Vedantam, D. Parikh, and D. Batra, “Grad-CAM: 
Visual Explanations from Deep Networks via 
Gradient-Based Localization,” Int J Comput Vis, 
vol. 128, no. 2, pp. 336–359, Feb. 2020, doi: 
10.1007/s11263-019-01228-7. 

[35] R. Karthik, R. Menaka, G. S. Kathiresan, M. 
Anirudh, and M. Nagharjun, “Gaussian Dropout 
Based Stacked Ensemble CNN for Classification 
of Breast Tumor in Ultrasound Images,” IRBM, 
vol. 43, no. 6, pp. 715–733, Dec. 2022, doi: 
10.1016/j.irbm.2021.10.002. 

[36] S. Armoogum, K. Motean, D. A. Dewi, T. B. 
Kurniawan, and J. Kijsomporn, “Breast Cancer 
Prediction Using Transfer Learning-Based 
Classification Model,” Emerging Science Journal, 
vol. 8, no. 6, pp. 2373–2384, Dec. 2024, doi: 
10.28991/ESJ-2024-08-06-014. 

[37] M. R. Islam et al., “Enhancing breast cancer 
segmentation and classification: An Ensemble 
Deep Convolutional Neural Network and U-net 
approach on ultrasound images,” Machine 
Learning with Applications, vol. 16, p. 100555, 
Jun. 2024, doi: 10.1016/j.mlwa.2024.100555. 

[38] F. Taheri and K. Rahbar, “Improving breast 
cancer classification in fine-grain ultrasound 
images through feature discrimination and a 
transfer learning approach,” Biomed Signal 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.779
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 611-623                                                e-ISSN: 2656-8632 

 

Manuscript received March 8, 2024; Accepted May 5, 2025; date of publication May 9, 2025 

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.779 

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 623               

Process Control, vol. 106, p. 107690, Aug. 2025, 
doi: 10.1016/j.bspc.2025.107690. 

[39] A. Sahu, P. K. Das, and S. Meher, “High accuracy 
hybrid CNN classifiers for breast cancer detection 
using mammogram and ultrasound datasets,” 
Biomed Signal Process Control, vol. 80, p. 
104292, Feb. 2023, doi: 
10.1016/j.bspc.2022.104292. 

[40] M. D. Ali et al., “Breast Cancer Classification 
through Meta-Learning Ensemble Technique 
Using Convolution Neural Networks,” 
Diagnostics, vol. 13, no. 13, p. 2242, Jun. 2023, 
doi: 10.3390/diagnostics13132242. 

 

 Author Biography  

Hanina Nafisa Azka is an 
undergraduate student at Universitas 
Sebelas Maret, Surakarta, majoring in 
Informatics. Her academic journey 
focuses on machine learning, 
computer vision, and medical image 
processing. She has been actively 
involved in research projects, including 

the development of a breast cancer classification 
model utilizing ultrasound images, enhanced with 
attention mechanisms to improve performance. Hanina 
has also contributed as a teaching assistant in several 
courses, such as Digital Systems, Operating Systems, 
and Software Engineering. Her work extends to 
participating in innovation programs like PKM, 
reflecting her passion for technological advancements 
and product development in the healthcare domain. 

 

Wiharto is a senior lecturer in the 
Informatics Department, Faculty of 
Information Technology and Data 
Science at Universitas Sebelas Maret, 
Surakarta. He has a strong academic 
background and extensive experience 
in the field of Computational Science & 

Engineering. Wiharto earned his doctoral degree from 
Universitas Gadjah Mada, where he specialized in 
BioMedical Informatics. His research primarily focuses 
on Bio-Medical Informatics, Artificial Intelligence, and 
Computational Intelligence, with an emphasis on 
solving real-world problems through innovative 
computational approaches. His contributions extend to 
mentoring students, publishing impactful research, and 
collaborating on interdisciplinary projects to advance 
the fields of health informatics and artificial intelligence. 

 

Esti Suryani is a dedicated 
researcher in the Computational 
Science and Engineering research 
group. She holds a Master’s degree in 
Computer Science from Universitas 
Gadjah Mada, where she cultivated a 

strong foundation in advanced computing 
methodologies. Her research interests span across 
various domains, including data analysis and the 
development of computational models to solve 
complex, real-world engineering problems. With a 
passion for interdisciplinary research, she collaborates 
with experts from diverse fields to explore innovative 
solutions, particularly focusing on optimizing algorithms 
and leveraging data-driven approaches. She also 
involved in mentoring students and guiding research 
projects, fostering the next generation of computational 
scientists.  

 

 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.779
https://creativecommons.org/licenses/by-sa/4.0/

