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ABSTRACT The Grad-CAM (Gradient-weighted Class Activation Mapping) technique has loomed as a crucial tool 
for elucidating deep learning models, particularly convolutional neural networks (CNNs), by visually accentuating 
the regions of input images that accord most to a model's predictions. In the context of lung cancer histopathological 
image classification, this approach provides discernment into the decision-making process of models like 
InceptionV3, XceptionNet, and VGG19. These CNN architectures, renowned for their high performance in image 
categorization tasks, can be leveraged for automated diagnosis of lung cancer from histopathological images. By 
applying Grad-CAM to these models, heatmaps can be generated that divulge the areas of the tissue samples 
most influential in categorizing the images as lung adenocarcinomas, squamous cell carcinoma, and benign 
patches. This technique allows for the visualization of the network's focus on specific regions, such as cancerous 
cells or abnormal tissue structures, which may otherwise be difficult to explicate. Using pre-trained models fine-
tuned for the task, the Grad-CAM method assesses the gradients of the target class concerning the final 
convolutional layer, generating a heatmap that can be overlaid on the input image. The results of Grad-CAM for 
InceptionV3, XceptionNet, and VGG19 offer distinct insights, as each model has unique characteristics. 
InceptionV3 pivots on multi-scale features, XceptionNet apprehend deeper patterns with separable convolutions, 
and VGG19 emphasizes simpler, more global attributes. By justaposing the heatmaps generated by each 
architecture, one can assess the model’s focus areas, facilitating better comprehension and certainty in the model's 
prophecy, crucial for clinical applications. Ultimately, the Grad-CAM approach not only intensify model transparency 
but also aids in ameliorating the interpretability of lung cancer diagnosis in histopathological image categorization. 
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I. Introduction 
Rapid advances in artificial intelligence have 

transformed the healthcare business, allowing for the 

creation of complex algorithms capable of processing 

massive volumes of data, recognizing patterns, and 

generating predictions with unparalleled precision. 

However, the increasing use of these AI-powered 

systems has prompted questions about their 

interpretability and transparency. A major obstacle in the 

clinical implementation of AI algorithms is the lack of 

trust and understanding among healthcare providers 

and patients, who frequently view these systems as 

incomprehensible "black boxes" whose internal 

structures and decision-making processes are not 

obvious or easily understandable. Addressing this issue, 

the concept of Explainable Artificial Intelligence has 

emerged as a prospective solution. Explainable AI aims 

to make AI algorithms more transparent and 

comprehensible, allowing clinicians and patients to 

better comprehend the rationale behind the predictions 

and decisions made by these systems[1]. This is 

particularly critical in the healthcare domain, where 

decisions can have profound implications for patient 

outcomes and safety. The significance of interpretability 

and limpidness in AI-powered healthcare systems has 

been widely recognized. Clinicians and patients are 

more likely to trust and adopt AI algorithms that can 

provide clear elucidation for their outputs, thereby 

strengthening the overall acceptance and integration of 

these technologies into clinical practice [2]. 

 

A. Background 

The rapid furtherance of artificial intelligence (AI) in 

healthcare has transfigured diagnostic processes, 
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treatment planning, and patient management. However, 

the increasing complexity of AI algorithms poses 

noteworthy provocation in terms of transparency and 

interpretability. As healthcare professionals rely on these 

technologies to make critical decisions, the need for 

explainable AI (XAI) has become paramount[3]. 

Explainable AI (XAI) refers to a set of techniques that 

make AI decisions interpretable and understandable to 

humans. In the healthcare domain, where AI-driven 

decisions can significantly impact patient outcomes, 

interpretability is essential to ensure trust among 

healthcare professionals and patients. XAI aims to 

provide insights into how AI models arrive at their 

prognosis, thereby enhancing trust and facilitating better 

collaboration between clinicians and AI systems.  
Given the interpretability gaps in current XAI 

approaches, there is a growing need for enhanced 

frameworks that balance computational efficiency, 

stability, and clinical relevance. Future research should 

focus on hybrid models that integrate multiple 

interpretability techniques, ensuring robust and clinically 

meaningful explanations. Additionally, user-centric 

evaluation, incorporating feedback from radiologists, is 

essential to refining AI-driven diagnostic tools for lung 

cancer. 

 

B. Rationale and Objectives 

Improving interpretability in AI-driven medical imaging 

can significantly impact clinical workflows and patient 

outcomes. When AI models provide clear, reliable 

explanations for their decisions, radiologists and 

oncologists can integrate AI-assisted diagnostics into 

their workflow with greater confidence. This can lead to: 

1. Faster and More Accurate Diagnoses: Enhanced 

interpretability allows AI models to highlight key 

diagnostic features, reducing ambiguity and 

expediting decision-making. 

2. Improved Treatment Planning: Clinicians can better 

understand AI-driven insights, leading to 

personalized and precise treatment strategies for 

lung cancer patients. 

3. Increased Trust and Adoption: Transparent AI 

models encourage greater trust among healthcare 

professionals, facilitating wider adoption and 

integration into daily practice. 

4. Reduced Diagnostic Errors: By making AI decisions 

interpretable, clinicians can identify potential model 

biases or errors, ensuring safer and more reliable 

patient care. 

   The ramifications of opaque decision-making can be 

severe in the high-stakes healthcare industry. For 

example, knowing the reasoning behind AI-generated 

suggestions is crucial for guaranteeing patient safety 

and adherence to clinical guidelines in fields like 

radiology, cancer, and personalized medicine[4]. 

Additionally, regulatory agencies are stressing the need 

for models that medical practitioners can examine and 

comprehend, highlighting the need of interpretability in 

AI applications. The key contributions of the proposed 

work are as follows: 

1. This paper aims to compare the effectiveness of 

various CNN architectures in lung cancer image 

classification and to evaluate their interpretability 

through Grad-CAM. 

2. It employs InceptionV3, VGG-19 and XceptionNet 

into categorization of lung adenocarcinomas, lung 

squamous cell carcinoma, and benign patches. 

Various rudimentary model evaluation metrics are 

computed. These metrics aids in selection of  the 

unrivalled model amongst the various models 

trained. 

3. Utilize Grad-CAM to recognize and visualize the 

regions of histopathological images that contribute 

most significantly to the prognosis made by CNN 

architectures. 

 

II. Related Works 
The latest XAI methods used in medical imaging are 
covered by Singh, Sengupta et al.[5] , with an emphasis 
on categorizing lung cancer from CT and X-ray images. 
The authors examine numerous approaches for 
rendering deep learning models interpretable, including 
Grad-CAM and LIME, and offer guidance on how these 
techniques can assist medical professionals in 
interpreting AI-driven judgments, particularly 
in diagnosing lung cancer. 
The use of XAI methods such as SHAP and LIME with 
convolutional neural networks (CNNs) for the 
categorization of lung cancer from CT and X-ray 
images is examined by Ganaie, Muhammad et al[6]. 
The study highlights how XAI techniques may detect 
important picture elements that affect the prediction 
result, including tumors or nodules. The authors 
suggest a framework that takes interpretability and 
classification accuracy into account. 
According to Kai Gao, Hui Shen et al [7], the primary 
approach to resolving the interpretability issue with 
deep networks is the display of deep models. One 
popular technique for visualizing deep models is the 
Class Activation Map (CAM). However, because CAMs 
only visualize the final layer, their resolution is limited. 
In this work, we combined Dense Net and CAM to 
create a new convolutional network called Dense-
CAM. We then visualized the entire network to produce 
a deep model visualization that is more reliable and 
accurate. Using almost 6000 samples, the network was 
evaluated on the gender categorization issue and 
achieved a 92.93% accuracy rate. Brain regions with 
significant dissimilarity between men and women are 
found with the proposed method, which can be used for 
future brain imaging studies. 
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Teramoto et al [8]used a deep convolutional neural 
network (DCNN), a popular deep learning method, to 
create an automated categorization scheme for lung 
tumors shown in microscopic images. Three 
convolutional layers, three pooling layers, and two 
penultimate linked layers constitute the classification 
phase of DCNN. The DCNN was trained utilizing a 
graphics processing unit and our original database in 
assessment studies. Prior to being augmented by 
rotation, flipping, and filtering to minimize overfitting, 
microscopic images were initially resized and 
resampled to generate images with a resolution of 256 
× 256 pixels. The employed method was used to 
evaluate the probability of three forms of cancer, and 
threefold cross validation was used to assess the 
categorization accuracy. About 71% of the images in 
the results were correctly categorized, which is 
analogous to the accuracy of pathologists and 
cytotechnologists. The developed method is efficient in 
categorizing lung tumors from microscopic images. 
Fig. 1 depicts various XAI methods. The following 
section discusses the general categories of XAI 
techniques and their contribution in making AI systems 
more comprehensible and transparent. 
 

A. Transparent Models 
These models are easy to use and can potentially place 
into practice quickly. Simple computations that even 
humans can perform make up the algorithms. As a 
result, these models can be explained, and people may 
readily comprehend how they reach a particular 
conclusion[9]. Examples of transparent models include 
linear regression, where resultants are determined by 
weighted sums of input attributes, and logistic 
regression, which assigns probabilities to various 
outcomes based on input data. Decision trees are 
simple rule-based structures that relegate decisions 
into a series of conditions, making them easy to 
visualize. Similarly, rule-based models explicitly define 
IF-THEN rules, often used in expert systems and 
business logic. The k-nearest neighbors (k-NN) 
algorithm, though less decipherable in high-
dimensional spaces, is intuitive in lower dimensions, as 
prognosis are based on similarity to known data points. 
Naïve Bayes classifiers also offer transparency by 
relying on probabilistic distributions and conditional 
independence assumptions.  
 
B.  Model Agnostic 
After a model has been learned to explicate its 
forecasts, post-hoc procedures are used in Explainable 
AI (XAI). In Explainable AI (XAI), "model agnosticism" 
refers to strategies and tactics that may be used with 
any machine learning model, irrespective of its intricacy 
or underlying architecture[10]. It can be used with 
different models without requiring significant changes 
or retraining. Examines a particular prediction by 

developing a local, interpretable model around it, 
demonstrating the impact of altering input 
characteristics on the result. A type of machine learning 
where the model makes prognosis based on specific 
instances of the training data rather than learning a 
general model. In the context of Explainable AI (XAI), 
IBL methods can provide interpretable predictions 
because they often rely on the similarity between 
instances. Table 1 depicts the various works on  XAI 
techniques 
 

Table 1. CAM and LIME Techniques 

Authors Technique Advantages 

Xiao et 

al[11] 

Improved 

Grad CAM  

Enhances the 

visualization of critical 

image regions. 

Selvaraju et 

al[12] 

Grad CAM Highlights important 

image areas for concept 

prediction 

Chen et al 

[13] 

C CAM 

Method 

Improves foreground 

and background 

boundaries in 

segmentation 

Vinogradova 

et al [14] 

SEG-

GRAD-

CAM 

Provides local 

representations for 

segmentations using 

gradients 

Ribeiro et al 

[15] 

LIME Provides interpretability 

for any classifier 

prediction 

Schiavon et 

al[16] 

GRAD-

CAM 

Predicts discrete 

subtypes of brain tumor 

Ahsan et al 

[17] 

LIME Provides a better 

understanding of the 

features in CT /Xray 

Images on COVID 19 

 
C. Model Specific 

Model-specific XAI techniques are tailored to provide 
explanations for certain types of machine learning 
models. These methods anchorage the unique 
characteristics and structures of the models to deliver 
more insightful and often more efficient explanations. 
These methods can be computationally more efficient 
than model-agnostic approaches, especially for simpler 
models[18].It makes the decision-making process easy 
to grasp by presenting facts in an understandable, 
human-readable manner. A set of conditional 
statements (if-then rules) that can be linked to data 
aspects serve as the basis for decision-making. It 
highlights regions of an input that accords most to the 
model's output, allowing users to see which features (or 
parts of the image) influenced the prediction the most. 
Saliency maps are typically generated using the 
gradients of the output with regard to the input[19]. By 
calculating these gradients, the maps show how 
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sensitive the model's prediction is to changes in each 
pixel. 
 
D. Inceptionnet (Googlenet) 
Google unveiled InceptionNet, a deep convolutional 
neural network that uses the Inception module, in 2014. 
By using convolutions of varying sizes (1x1, 3x3, 5x5) 
in parallel, this module enables a more effective use of 
computational resources while capturing a range of 
feature scales. It greatly reduces overfitting by using 
global average pooling in place of fully connected 
layers[20]. With more than 20 layers, the architecture 
is deep and includes dimensionality reduction 
strategies like 1x1 convolutions to aid in calculation 
speedup[21]. Particularly in tasks requiring multi-scale 
feature extraction, such as tumor identification, lesion 
segmentation, and organ categorization in medical 
imaging like CT scans, MRIs, and X-rays, InceptionNet 
has demonstrated great promise in the medical field. 
An algorithm developed by Pranav Rajpurkar et al[22] 
identify pneumonia from chest X-rays more accurately 
than trained radiologists. With over 100,000 frontal-
view X-ray images of 14 diseases, ChestX-ray14 is 
presently the widely used open source chest X-ray 
dataset.The work justapoxed CheXNet's performance 
to radiologist’s prognosis using a test set annotated by 
four active academic radiologists. On the F1 metric, the 
work evaluated that CheXNet accomplishes better than 
the average radiologist. 
 
E. Xceptionnet 
François Chollet[23] presented the Xception  
architecture in 2017, which enhances InceptionNet by 
substituting depthwise separable convolutions for the 
usual convolutions. This method divides the 
convolution process into two stages: pointwise 

convolutions (1x1 convolutions across the output 
channels) and depthwise convolutions.This preserves 
great representational power while lowering the 
number of parameters.  
B. Uma Maheswari et al [24]proposed model consisting 
of four convolution-MaxPooling layers with different 
hyperparameters that were ameliorated for feasible 
performance using a Bayesian optimization technique. 
The model was delineated with a apex categorization 
evaluation metrices of accuracy with 0.95. In addition, 
the receiver operating characteristic (ROC) curve for 
the proposed shallow-CNN showed a apex area under 
the curve value of 0.976. Moreover, they have 
incorporated class activation maps (CAM) and Local 
Interpretable Model-agnostic Explanations (LIME), 
explainer systems for estimating the limpidness and 
explainability of the model in contrast to a existing pre-
trained neural net such as the DenseNet. 
 

F. VGG-19 
 The Visual Geometry Group (VGG) introduced the 
VGG-19, a deep convolutional neural network 
renowned for its straightforward yet profound 
architecture, in 2014. Three fully connected layers and 
sixteen convolutional layers make up its 19 layers[25]. 
The VGG architecture is straightforward but highly 
effective because it just employs 3x3 convolutional 
filters. Medical image classification has made 
extensive use of VGG-19, particularly in applications 
where complicated pattern detection requires deep 
learning models. 
Harsh Shah et al[26] presented an explicable approach 
for ascertaining cataracts using the VGG-19 
convolutional neural network (CNN) and the Gradient-
weighted Class Activation Mapping (Grad-CAM) 
visualization technique. They trained and tested model 

 
Fig. 2. Proposed Methodology 
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using 2,112 high-resolution fundus images from a 
publicly available dataset. According to the findings, the 
proposed method attained a very high accuracy of 
97%. Furthermore, the Grad-CAM visuals showed the 
image regions that accord to the model's decision, 
providing discernment into the diagnosis process and 
enhancing the model's trustworthiness. The findings of 
this study could aid in ameliorating patient outcomes 
and lowering healthcare costs by allowing for the early 
recognition and diagnosis of cataracts. Overall, the 
fusion of VGG-19 with Grad-CAM offers a viable option 
in the medical domain for recognizing cataracts and 
understanding CNN - based decisions. Cleverson 
Marques Vieira et al[27] Machine learning models have 
spread throughout numerous sectors, revolutionizing 
illness detection and providing surprising applications 
in healthcare. In particular, the introduction of artificial 
intelligence approaches has dramatically altered the 
field of ophthalmology, allowing for the early diagnosis 
of neurodegenerative eye illnesses such as glaucoma 
via picture categorization. However, the lack of 
explainability in model judgements is a significant 
hurdle to their broad use in clinical practice. This study 
overcomes this issue by investigating and 
implementing explainable artificial intelligence (XAI) 
approaches on various convolutional neural network 
(CNN) architectures for glaucoma classification. The 
research is on providing ophthalmologists with reliable 
resources for human interpretation and clinical 
diagnosis. The work is based on a unique visual 
interpretation strategy known as SCIM (SHAP-CAM 
Interpretable Mapping) and compares its performance 
to current approaches. 
 
III. Methods  
The proposed model  shown in Fig. 2 takes the resized 
images to a uniform size 299*299, normalize pixel 
values and apply data augmentation to enhance model 
generalization. The input is lung cancer dataset 
comprising of 15,000 histopathological images 
belonging to three categories namely lung 

adenocarcinomas, lung squamous cell carcinoma, and 
lung benign cells. The model is trained on InceptionV3, 
XceptionNet, VGG19 architectures. In order to 
enhance the interpretability of the predictions made by 
these deep learning models, the Grad-CAM (Gradient-
weighted Class Activation Mapping) technique is 
integrated into the system. Grad-CAM operates by 
computing the gradients of the target class output with 
respect to the feature maps of the final convolutional 
layers. These gradients are then used to assign 
importance weights to the feature maps, allowing for 
the generation of heatmaps that highlight the most 
influential regions within the input images. These 
heatmaps provide critical visual explanations by 
indicating which parts of the histopathological tissue 
the model focuses on when making a diagnosis. The 
performance of InceptionV3, XceptionNet, and VGG19 
are compared based on evaluation metrics and Grad-
CAM is employed for interpretability.  
 

A. Inceptionv3 
InceptionV3, a deep convolutional neural network, is 
highly effective for lung cancer categorization from 
histopathological images due to its systematic design 
and multi-scale attribute extrication capabilities[28] . 
The model  represented in Fig. 3 accepts input images 
of size 299x299x3, followed by several convolutional 
layers that extricate low-level attributes such as edges 
and textures. Its core strength lies in the Inception 
modules, which perform parallel convolutions with 
various kernel sizes (1x1, 3x3, 5x5) and pooling 
operations, allowing the model to apprehend both fine-
grained details  and broader patterns[29]. Factorized 
convolutions and asymmetric convolutions minimizes 
computational complexity while maintaining rich 
attribute representation. Auxiliary classifiers provide 
additional supervision during training, improving 
convergence. As the network progresses, reduction 
layers downsample attribute maps, retaining significant 
details. The final stages use Global Average Pooling 
(GAP) to minimize dimensionality before a fully 

 

 
Fig. 3. InceptionV3 architecture 
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connected layer and a softmax activation for final 
classification [30]. The model can be fine-tuned using 
pre-trained weights and offers improved 
comprehensibility through Grad-CAM, which generates 
heatmaps to envisage important regions in the lung 
tissue, helping clinicians understand the model's 
decision-making process. Overall, InceptionV3 is 
highly efficient for lung cancer detection, offering 
precise prognosis with enhanced interpretability and 
computational efficiency. The fundamental operation in 
InceptionV3 is the convolution, defined as in Eq. (1) 
[28]. 
 
𝑦(𝑖, 𝑗, 𝑘) = ∑ 𝑚 ∑ 𝑛 ∑ 𝑐  𝑊(𝑚. 𝑛, 𝑐, 𝑘). 𝑥(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑐)          (1) 
   

where m, n indices over the height and width of the 
kernel, c sums over input channels, k represents the 
index for output feature map, i and j depicts spatial 
position of output feature map, 𝑥(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑐)  

represents input tensor for channel. 𝑊(𝑚. 𝑛, 𝑐, 𝑘) 
represents weight tensor filter and  𝑦(𝑖, 𝑗, 𝑘) is the 

output tensor  for value at position (i,j) for the output 
feature m (channel k). Each inception module applies 
different sized filters in parallel as in Eq. (2)[28]. 
 
            𝐹𝑜𝑢𝑡 =  ⨁(𝑓1(𝑥), 𝑓3(𝑥), 𝑓5(𝑥), 𝑓𝑝𝑜𝑜𝑙 (𝑥)                                (2) 

 
where𝑓1(𝑥)is a 1 * 1 convolution for dimensionality 

reduction, 𝑓3(𝑥)  is  a 3*3 convoltion for local attribute 

extrication, 𝑓5(𝑥) is a 5*5 convolution for larger 

receptive fields,𝑓𝑝𝑜𝑜𝑙(𝑥) is a pooling operation for 

spatial compression ⨁  represents concatenation along 

the channel dimension. Inception V3 uses auxiliary 
classifiers at intermediate layers to mitigate vanishing 
gradients. The auxiliary loss is calculated as in Eq. 
(3)[28]. 
 

                             𝐿𝑎𝑢𝑥 = ∑ 𝑦𝑖𝑖 log 𝑦𝑖
^                                         (3) 

where  𝑦𝑖 is the ground truth label, 𝑦𝑖
^ is the predicted 

probability. InceptionV3 employs batch normalization 
after every convolutional layer to stabilize training as 
defined in Eq. (4)[28]. 
             

       𝑥^ =
𝑥−µ𝐵

√𝜎𝐵
2+𝜖

                                             (4) 

µ𝐵 and 𝜎𝐵
2 are the batch mean and variance. ϵ is a small 

constant to avoid division by zero. 
 
B. XCEPTIONNET 

XceptionNet, an extension of the Inception 
architecture, is a powerful deep learning model well 
suited for lung cancer maps. In XceptionNet shown in 
Fig. 4, each standard convolution operation is replaced 
with two classifications from histopathological images 
[31]. The architecture is based on depthwise separable 
convolutions which significantly improve the 
computational efficiency by separating the process of 
filtering and combining features smaller operations: a 
depthwise convolution (incorporating a single filter to 
each input channel) and a pointwise convolution (1x1 
convolutions that amalgamates the output from the 
depthwise convolution) cancer tissue[32]. XceptionNet 
replaces standard convolutions with depthwise 
separable convolutions, which are decomposed into: 
 
1. Depthwise Convolution 
Each channel of the input is convolved separately with 
a different filter as in Eq. (5)[23]. 
                                      𝑌𝑑

𝑐 = 𝑊𝑑
𝑐 ∗  𝑋𝑐                              (5) 

where𝑌𝑑
𝑐  is the depthwise convolved output for channel 

c,  𝑊𝑑
𝑐  is the depthwise convolution filter for channel 

c,𝑋𝑐  is the input channel c. 

 
2. Pointwise Convolution 

 
 

Fig. 4. XceptionNet architecture 
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A 11×1 convolution is applied across all depthwise-
filtered channels to mix channel information as depicted 
in Eq. (6)[23]. 
                                𝑌𝑑

𝑐 = ∑ 𝑐 𝑊𝑑
𝑐 ∗  𝑋𝑐                                        (6) 

 
where 𝑌𝑑

𝑐 is the final output feature map, 𝑊𝑑
𝑐is the 

pointwise convolution filter for channel c. 
 

3. Xception Block 
Each Xception block consists of: 
a) Depthwise separable convolutions followed by 

Batch Normalization and ReLU activation 
b) Skip connections (Residual connections) to 

enhance gradient flow. 
 The Eq. (7) [33] represents the single Xception block 

          𝐹(𝑋) = 𝜎(𝐵𝑁(𝑊𝑝 ∗ (𝜎(𝐵𝑁(𝑊𝑑 ∗ 𝑋))))                 (7) 

 
where 𝑊𝑝  and 𝑊𝑑  are depthwise and pointwise 

convolution filters, BN is batch normalization and σ is 
the ReLU activation function. 
 
4. Residual Connection 
XceptionNet uses residual connections, which add the 
input to the output of the convolution block as depicted 
in  Eq. (8)[33]. 
                               Y = X + F(X)                                         (8)    

 
where X is a input to block , F(X) is transformation 
applied to block and Y is the output of residual 
connection. If dimensions do not match, a projection 
layer Ws is applied as in Eq. (9)[33]. 
 

                                     Y = Ws ∗  X + F(X)                               (9) 

 
where Ws is the learned linear projection applied to X. 
 

C. VGG-19 
VGG19 is a deep convolutional neural network known 
for its simplicity and depth, which makes it effective for 
image classification tasks, including lung cancer 
detection from histopathological images. The 
architecture depicted in Fig. 5 consists of 19 layers, 
with 16 convolutional layers and 3 fully connected 

layers. VGG19 uses small 3x3 convolution filters, which 
are stacked to capture complex patterns while 
maintaining a manageable number of parameters[34]. 
The network also employ max-pooling layers after 
every few convolutional layers to reduce spatial 
dimensions and retain essential features. After the 
convolutional layers, flattening is applied to reshape 
the output into a 1D vector, which is then passed 
through fully connected layers. The penultimate layer 
uses softmax activation to output probabilities for  
classification, distinguishing between cancerous and 
non-cancerous lung tissue. Although VGG19 is 
computationally more expensive compared to models 
like InceptionNet or XceptionNet, its straightforward 
design and effectiveness in capturing detailed spatial 
information make it a valuable tool for lung cancer 
classification when fine-tuned on a large 
histopathological dataset. Table 2 represents the 
configuration settings for the various architectures in 
the proposed model with respect to input shape, 
learning rate, batch size, optimizer, loss function and 
drop out parameters. 
 

Table 2. Configuration Settings 
 

Parameter  InceptionV
3 

Xception
Net 

VGG-19 

Input shape 299*299*3 299*299*3 224*224*
3 

Learning 
Rate 

0.0001 
 

0.0001 
 

0.0001 
 

Batch Size 32 32 32 

Optimizer Adam SGD RMSProp 

Loss 
Function 

Categorical 
cross 
entropy 

Categoric
al cross 
entropy 

Categoric
al cross 
entropy 

DropOut 0.4 0.3 NIL 
 

D. Grad- CAM 
Step 1: Gradient Computation in GradCAM 
In order to calculate the final score for a particular 
class, each attribute map from the penultimate 
convolutional layer records various amounts of high-

 
Fig. 5.VGG-19 architecture 
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level information about the input image. The goal is to 
investigate the connection between the output and the 
attribute maps. A modification to the attribute map 
would alter the score value for any particular class, c . 
In order to highlight the areas of the input image that 
were used to produce the prediction, importance score 
must be calculated based on the gradient of the class 
score zc with respect to the attribute maps Mk as 
represented in Eq. (10)[12]. 
 

                                     
𝜕𝑧𝑐

𝜕𝑀𝑘                                   (10) 

 
For the equation above, Zc, is a scalar (anticipated 
score before the SoftMax calculation), and Mk is a two-
dimensional attribute map. So, the gradient is also a 
two-dimensional map with the exact spatial dimensions 
as the attribute maps, Mk. 
Step 2: Enumerate Alpha Values for GradCAM 
Alpha values, which can be regarded as significant 
values,  are obtained in this stage by performing global 
average pooling of the gradients throughout the width 
and height as represented in Eq. (11)[12]. 

                      𝛼𝑘
𝑐=

1

𝑌
∑𝑖∑𝑗

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘                                  (11) 

where Y is the sum of number of pixels in each attribute 
map, and the calculation below yields k alpha values 
for each class. 
Step 3: Produce GradCAM Heatmap 
The alpha values determined in the previous step are 
analogous to the weights in the penultimate layer for 
the CAM approach, excluding that the alpha values 
were generated using gradients. 
Similar to CAM,  a weighted sum of the activation maps 
can be calculated where the weights are the alpha 
values determined as below in Eq. (12) [34]. 
 

             𝛼𝑘
𝑐 𝑀𝑘 = 𝛼1

𝑐 . 𝑀1 + 𝛼2
𝑐 . 𝑀2 … + 𝛼𝑘

𝑐 . 𝑀𝑘             (12) 

 
where 𝛼𝑘

𝑐  is importance weight for feature map k for 

class c, c is the specific class and k is total number of 
features. 
Step 4: Eventually, to determine the GradCAM 
heatmap, the above-aggregated sum is passed  
through a ReLU  activation function to zero out any 
negative gradients as in Eq. (13) [34]. 
 

                    𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑆𝑖𝐿𝑈 (∑𝑘𝛼𝑘

𝑐 𝑀𝑘                    (13) 

 
where  𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀

𝑐 is the  Grad-CAM heatmap for class c 

and SiLU is the Sigmoid Linear Unit activation function. 
The aforementioned computation will yield a coarse 
localization map with precisely the same spatial 
dimensions as the attribute maps. The heatmap is then 
upsampled to the same size as the input image and 
normalized to the [0,1] range to create a final heatmap 
that can be superimposed over the image. 

IV. Results 
The Larxel’s lung cancer dataset from Kaggle is used 
for experimental purpose. There are 15,000 
histopathological scans in this dataset, separated into 
three categories of lung adenocarcinomas, lung 
squamous cell carcinomas, and lung benign tissues. 
The images were obtained using a sample of 750 
original lung tissue images from sources that complied 
with and were authorized by the Health Insurance 
Portability and Account ability Act (250 benign lung 
tissue, 250 lung adenocarcinomas, and 250 lung 
squamous cell carcinomas). To expand the dataset 
and enhance the diversity of training samples, 
extensive data augmentation was performed using the 
Augmentor package. Through various augmentation 
techniques such as rotations, flips, scaling, and color 
adjustmentsthe original 750 images were artificially 
increased to form a total of 15,000 images.  
 

This augmentation process ensured that each of the 
three categories was equally represented with 5,000 
images, which helps in improving the robustness and 
generalization capability of the models trained on this 
dataset. The split ratio for the training, validation, and 
testing sets is 70:10:20. 10500 of the 15,000 images 
are used for training, 1500 for validation and 3000 for 
testing. Each model is trained using a training set 
(70%), validation set (10%), Test Set (20%). 

 

 

                      (a) 

 

 

(b)  
 

 
(c) 

Fig. 6. Misclassified images by InceptionV3, XceptionNet, 
VGG-19 respectively a) Sample normal image 
misclassified as adenocarcinomas, (b) Sample 
adenocarcinomas misclassified as squamous cell 
carcinomas, (c) Sample normal image misclassified as 
adenocarcinomas. 
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Categorical cross-entropy for multi-class with Adam 
optimizer is applied. The training is explicitly set for 90 
epochs with 328 steps per epoch and 93 steps for 
validation.The optimizer is defined as the SGD 
optimizer with a learning rate of 1e-3 for XceptionNet, 
Adam optimizer with a learning rate of 1e-4  for 
InveptionV3,the Adam optimizer with  learning rate of 
1e-4, is used for VGG-19 which is well-suited for fine-
tuning deep learning models with 
categorical_crossentropy as the loss function. 

Fig. 6 illustrates examples of misclassified images 
from three deep learning models—InceptionV3, 
XceptionNet, and VGG-19—using Grad-CAM 
visualizations to highlight regions that influenced the 
models' predictions. In (a), a normal lung tissue image 
was incorrectly classified as adenocarcinoma, 
suggesting that the model may have focused on benign 
structural patterns resembling malignant features. In 
(b), an actual adenocarcinoma sample was 
misclassified as squamous cell carcinoma, indicating 
confusion between similar histopathological patterns. 
Lastly, in (c), another normal image was again 
misclassified as adenocarcinoma, emphasizing the 
challenge in distinguishing subtle variations in tissue 
appearance. These Grad-CAM visualizations provide 
insight into the decision-making processes of the 
models and reveal potential areas where the models 
may be overfitting or misinterpreting key 
 features. 
 
A. Evaluation Metrics and Results 
(i) Accuracy is one of the most commonly used 
performance metrics for evaluating the overall 
effectiveness of a classification model. It represents the 
ratio of correctly predicted samples (both true positives 
and true negatives) to the total number of samples in 
the dataset. In other words, accuracy shows how often 
the model makes correct predictions. Although 
accuracy provides a simple and intuitive measure, it 
can be misleading when dealing with imbalanced 
datasets. For example, if the dataset has a dominant 
class, the model may achieve high accuracy by 
predicting the majority class for all samples, while 
performing poorly on the minority class. As such, 
accuracy should be used in conjunction with other 
metrics like precision, recall, and F1 score to get a 
more comprehensive evaluation of model 
performance. Eq. (14)[31] represents the accuracy.    
 

        Accuracy=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒𝑠 𝑆𝑎𝑚𝑝𝑙𝑒𝑑
                    (14) 

 
(ii) Precision: Precision, also known as positive 
predictive value, is a metric that focuses on the 
performance of the model in predicting the positive 
class. Specifically, precision is the ratio of true positive 
predictions to the total number of samples predicted as 

positive (true positives + false positives). This metric is 
particularly important in scenarios where false positives 
are costly or undesirable. For instance, in medical 
diagnosis, a high precision means that when the model 
predicts a patient has a disease, it is very likely to be 
correct. It is the ratio of truly prognosed positive 
samples to overall prognosed positive samples as in 
Eq. (15)[31]. 
 

  Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
            (15) 

 
(iii) Recall: Recall, also known as sensitivity or true 
positive rate, measures how well the model identifies 
actual positive samples. It is the ratio of true positives 
to the total number of actual positive samples in the 
dataset (true positives + false negatives). Recall is 
critical in situations where missing a positive instance 
is more detrimental than falsely classifying a negative 
instance as positive. For example, in disease detection, 
recall would measure how effectively the model detects 
all the patients who actually have the disease. A high 
recall means fewer cases of the condition are 
overlooked, but it may result in more false positives. To 
obtain a balanced evaluation of model performance, 
recall is typically considered alongside precision. It  is 
the ratio of truly prognosed  positive samples to overall 
samples in the actual class as in Eq.(16)[31]. 
            

       Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑠𝑙𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                            (16) 

 
(iv) F1 score: The F1 score is a harmonic mean of 
precision and recall, providing a single metric that 
balances the trade-off between the two. It is especially 
useful when the class distribution is imbalanced and 
you need to balance the importance of both precision 
and recall. The F1 score is calculated as the ratio of 
twice the product of precision and recall to the sum of 
precision and recall. This metric is valuable because it 
ensures that a model is not biased towards only 
optimizing one metric (such as precision) at the 
expense of the other (such as recall). A high F1 score 
indicates that the model performs well in both 
identifying positive instances and minimizing false 
positives. In cases where a balance between false 
positives and false negatives is critical, the F1 score is 
a preferred choice. It is the weighted mean of precision 
and recall as in Eq. (17)[31]. 
              

      F1 score = 
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                       (17) 

 
The performance of the three modelsInceptionNetV3, 
XceptionNet, and VGG-19 was evaluated using several 
key metrics: accuracy, precision, F1-score, and recall. 
XceptionNet outperforms the other two models across 
all metrics, with an accuracy of 98.2%, indicating the 
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highest overall classification performance. It also leads 
in precision at 97.4%, meaning it has the highest 
proportion of correct positive predictions, minimizing 
false positives.  

 
Table 3.  Evaluation Metrics of the Proposed Model 

Models Acc. Precision  F1-
Score 

Recall 

Inception 
V3 

97.1 96.8 97.2 96.4 

Xception 
Net 

98.2 97.4 98.6 97.7 

VGG-19 95.8 96.4 95.3 94.8 

 
Additionally, XceptionNet achieves the highest F1-
score of 98.6%, which highlights its well-balanced 
performance between precision and recall. Recall for 
XceptionNet is 97.7%, indicating that it correctly 
identifies a large portion of actual positive cases. In 
comparison, InceptionNetV3 shows slightly lower 
performance across all metrics, with an accuracy of 
97.1%, precision of 96.8%, F1-score of 97.2%, and 
recall of 96.4%. VGG-19 has the lowest performance, 
with an accuracy of 95.8%, precision of 96.4%, F1-
score of 95.3%, and recall of 94.8%, indicating it 
struggles slightly more in both precision and recall, 
especially in identifying all positive cases. Overall, 
XceptionNet provides the best balance and highest 
performance across these evaluation metrics. The 
comparative analysis of three CNN models on 
Categorizing the lung cancers are shown in Fig. 7 for  
VGG19, InceptionV3 and XceptionNet models.  
 

V. DISCUSSION 

The key findings from the analysis of misclassified 
samples using Grad-CAM and Heatmaps for 

InceptionV3, XceptionNet, and VGG-19 reveals that 
each model has distinct weaknesses in feature focus, 
which contribute to misclassifications. InceptionV3 
tends to overemphasize complex or irrelevant patterns 
in the image, indicating that the model may be 
overfitting to specific features, which do not generalize 
well. XceptionNet, known for its depth wise separable 
convolutions, often concentrates on small, localized 
regions, which may include textures or artifacts not 
relevant to the target class, leading to 
misclassifications. VGG-19, with its simpler 
architecture, struggles with capturing global context 
and often focuses on smaller, less informative regions, 
causing the model to miss important contextual cues. 
These findings highlight the importance of improving 
model attention mechanisms and feature extraction 
capabilities to focus more effectively on the relevant 
areas of the image. This analysis emphasizes the need 
for better generalization and context understanding in 
these models to reduce misclassification errors. The 
heatmaps and GradCAM for misclassified samples are 
shown in Fig. 8. Furthermore, these insights suggest 
that improving model architectures to better capture 
both global and local features, as well as regularizing 
the models to avoid overfitting, could enhance their 
performance. Incorporating more advanced attention 
mechanisms or multi-scale features may also help 
models focus on the most relevant parts of the image, 
reducing misclassifications.  
 

Table 4. Comparison with state of art models 

Authors Methods Accuracy (%) 

Sabbir 
Ahmed et al 
[35] 

Logistic 
Regression , 
SHAP and LIME 

 
 97% 

 
Joshua et al 
[36] 

SENET (Squeeze-
and-Excitation 
Networks), 
GradCAM++ 

97.08 

Niyaz Ahmad 
et al [37] 

Convolutional 
Neural Network, 
XGBoost, SHapley 
Additive 
exPlanations 

97.43 

Proposed 
Model 

Xception 
Net, GradCAM 

98.2 

 
The performance evaluation of the proposed model 
with existing state of art models is discussed in Table 
4. Sabbir et al[35] have proposed an interpretable lung 
cancer diagnostic system utilizing various machine 
learning models, including Decision Tree, Logistic 
Regression, Random Forest, and Naive Bayes 
classifiers. Among the models evaluated, Logistic 
Regression and Random Forest achieved the highest 
prognosis accuracy of 97% for lung cancer recognition. 
To enhance the transparency and interpretability of our 

 
Fig. 7. Comparative Analysis of CNN Models 
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models, we also employed two widely used explainable 
AI (XAI) techniques: SHAP and LIME. 
 

Joshua et al[36] have introduced an advanced 
approach for distinguishing malignant from benign lung 
nodules in CT scans by integrating Grad-CAM++ with 
a Squeeze-and-Excitation Network (SENET). The 
proposed SENET-Grad-CAM++ module leverages the 
feature calibration and enhancement capabilities of 
SENET to significantly improve feature discriminability 
in lung cancer classification. Evaluated using the 
publicly available Lung dataset comprising 1,230 
nodules (600 malignant and 630 benign) the method 
achieved an AUC of 0.9664 and an accuracy of 
97.08%. These promising results highlight the 
robustness of the proposed technique in nodule 
classification and underscore its potential to support 
radiologists in accurately interpreting diagnostic CT 
scans and distinguishing between benign and 
malignant lung nodules. 

Niyaz ahmad et al[37] have presented 
DeepXplainer, a novel interpretable hybrid deep 
learning framework for lung cancer detection and 
prediction explainability. The model integrates a 
Convolutional Neural Network (CNN) for automatic 
feature extraction with XGBoost for final class label 
prediction. To enhance transparency, the SHAP 
(SHapley Additive exPlanations) method is applied to 
interpret predictions at both local and global levels. The 
approach has demonstrated superior performance 
across multiple metrics. It achieved an accuracy of 
97.43%, sensitivity of 98.71%, and an F1-score of 
98.08%, outperforming existing methods while offering 
clear interpretability of each prediction. This 
interpretability is crucial for medical practitioners, 
enabling them to confidently rely on the model’s 
predictions for lung cancer detection and diagnosis. 
The proposed model, XceptionNet with Grad-CAM, 
achieved an accuracy of 98.2%, which demonstrates 
its strong performance in lung cancer detection. While 
InceptionV3 and VGG-19 may struggle with focusing 
on irrelevant features or context, XceptionNet utilizes 
depthwise separable convolutions that allow it to focus 
more effectively on relevant patterns in the image. The 
integration of Grad-CAM also enhances model 
interpretability, providing clear visual explanations for 
its predictions, which is critical in medical applications. 
This makes XceptionNet a robust and interpretable 
choice for lung cancer detection, surpassing traditional 
models in both performance and transparency. 

The limitations of the models evaluated, such as 
InceptionV3, XceptionNet, and VGG19, are fine-tuned 
for lung cancer histopathological images, but their 
performance may be suboptimal when applied to other 
medical imaging modalities, such as CT scans or MRIs. 
While Grad-CAM is useful, combining it with other 
interpretability methods, such as Layer-wise 
Relevance Propagation (LRP) or Integrated Gradients, 
could provide a more comprehensive understanding of 
model decision-making. 

The implications of this study are significant, 
particularly in the context of clinical decision support for 
lung cancer diagnosis. By integrating Grad-CAM with 
deep learning models like InceptionV3, XceptionNet, 
and VGG19, this study not only enhances the accuracy 
of automated lung cancer detection from 
histopathological images but also provides much-
needed interpretability. The ability to visualize which 
areas of the tissue samples influence a model’s 
decision is crucial for building trust in AI-based medical 
systems. This transparency helps clinicians 
understand the rationale behind predictions, offering a 
second opinion and reducing diagnostic errors. 
Moreover, the insights gained can assist in identifying 
critical features that are indicative of cancerous tissues, 
enabling more precise diagnoses and potentially 
improving patient outcomes. The study also lays the 

      

(a) (b) 

    
(c)                               (d) 

     

                   (e)                              (f) 

 
Fig. 8.  HeatMaps and Grad-CAM for misclassified 
samples respectively, (a),(b) Misclassified sample by 
InceptionV3 (c),(d) Misclassified sample by 
XceptionNet, (e),(f) Misclassified sample by VGG-19. 
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groundwork for future applications of AI in pathology, 
where interpretability is essential for clinical 
acceptance and integration into routine practice. 
 
VI. CONCLUSION 

This study aims to enhance the transparency and 
interpretability of deep learning models used in the 
classification of lung cancer histopathological images 
by employing the Grad-CAM (Gradient-weighted Class 
Activation Mapping) technique. The core objective is to 
provide meaningful visual explanations that identify the 
most critical regions in tissue images influencing the 
model's predictions, thereby ensuring that the decision-
making process is understandable and aligned with 
clinical reasoning. Grad-CAM was systematically 
applied to several prominent convolutional neural 
network architectures, including InceptionV3, 
XceptionNet, and VGG19, each known for distinct 
architectural strengths such as multi-scale feature 
detection, deep pattern abstraction, and global feature 
extraction. The visualizations produced by Grad-CAM 
effectively demonstrated where each model focused 
during classification, offering vital insights into the 
interpretability of AI-driven diagnosis. Among the 
evaluated models, XceptionNet exhibited superior 
classification performance, achieving the highest 
accuracy and generating clearer, more clinically 
relevant heatmaps that highlighted abnormal and 
cancerous regions with high precision. These results 
not only reinforced the reliability of the model 
predictions but also provided pathologists with 
supportive diagnostic evidence through visual 
interpretation. 

The study evaluated the performance of three deep 
learning models for lung cancer detection: InceptionV3, 
XceptionNet, and VGG-19. XceptionNet achieved the 
highest accuracy at 98.2%, with a corresponding error 
rate of 1.8%. InceptionV3 followed closely with an 
accuracy of 97.1%, resulting in an error rate of 2.9%. 
VGG-19, although performing well, had the lowest 
accuracy among the three models, reaching 95.8%, 
which corresponds to an error rate of 4.2%. These 
results demonstrate that while all models perform 
admirably, XceptionNet outperforms the others in terms 
of accuracy and minimizes the error rate, making it a 
more reliable choice for lung cancer detection in 
histopathological images. The findings suggest that 
integrating Grad-CAM into the diagnostic workflow can 
bridge the gap between complex AI models and clinical 
practice, fostering greater trust among healthcare 
professionals. Additionally, comparing the heatmaps 
across different architectures revealed complementary 
strengths, suggesting the potential for ensemble 
approaches to further enhance diagnostic 
performance. Grad-CAM provides qualitative 
heatmaps, but it lacks a standardized quantitative 
measure to evaluate the reliability of highlighted 

regions. For future work, techniques like Guided Grad-
CAM and SmoothGrad can refine heatmaps by 
reducing noise and enhancing fine-grained details, 
helping in more precise localization of cancerous 
regions and improving spatial accuracy. Instead of 
relying solely on the final convolutional layers, 
analyzing heatmaps from multiple layers can provide a 
hierarchical view of feature extraction, improving 
interpretability.. Finally, collaborative studies involving 
radiologists and pathologists are planned to validate 
the clinical usefulness of the generated visual 
interpretations and refine the system for real-world 
deployment.  
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