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ABSTRACT Differentiated thyroid cancer is the most common type of thyroid cancer; the types in this category are papillary, 

follicular, and hurthel cell carcinoma. Up to 20% of DTCs will experience recurrence, although this figure reduces to 5% in low-

risk patients. There is still little research on thyroid cancer prediction using a machine learning approach, especially the prediction 

recurrence of DTCs. This research aims to compare the performance of the Extreme Learning Machine and the Hidden Markov 

Model using SMOTE in predicting the recurrence of DTCs. The dataset used in this research is differentiated thyroid cancer 

recurrence from Kaggle. This research methodology comprises preprocessing, data sharing, SMOTE, ELM and HMM modeling 

algorithms, and evaluation. ELM with SMOTE gets the best results at a ratio of 90:10 with 35 hidden neurons that get an accuracy 

value of 1.00, precision 1.00, recall 1.00, and AUC 1.00. ELM modeling gets the best results at a ratio of 90:10 with 45 hidden 

neurons that get an accuracy value of 1.00, precision 1.00, recall 1.00, and AUC 1.00. HMM modeling with SMOTE gets the best 

results at a ratio of 70:30 with two hidden states and two iterations, with an accuracy value of 0.8696, precision of 0.8832, recall 

of 0.7848, and AUC of 0.9174. Last, HMM modeling gets the best value at a ratio of 60:40 with two hidden states and three 

iterations, which get an accuracy value of 0.8636, precision 0.8471, recall 0.7946, and AUC 0.9343. Based on the results of this 

study, it can be concluded that ELM with SMOTE gets the best performance, followed by ELM without SMOTE, HMM with 

SMOTE, and HMM without SMOTE. The implication is that ELM with SMOTE can produce high accuracy in predicting the 

recurrence of DTCs. 

INDEX TERMS Thyroid cancer, Extreme Learning Machine, Hidden Markov Model, SMOTE 

I. INTRODUCTION 

The thyroid gland is a small butterfly-shaped gland located at 

the base of the neck, just below the Adam's apple. It is part of 

the endocrine system, responsible for producing hormones. 

Thyroid hormones regulate metabolism, growth and 

development, and brain and heart function. When cells in the 

thyroid gland grow abnormally, it can lead to thyroid cancer. 

In 2022, there were approximately 821.173 new cases of 

thyroid cancer diagnosed globally, accounting for 

approximately 4% of all cancer cases. thyroid cancer ranks as 

the seventh most common cancer in terms of incidence overall 

and fifth in women [1]. About 75% of patients diagnosed with 

thyroid cancer are women, with an incidence rate of 

10.1/100,000 women per year, while the incidence rate in men 

is 3.1/100,000 per year [2]. Among the different types of 

thyroid cancer, differentiated thyroid cancer (DTCs) is the 

most common. The types of thyroid cancer that fall under this 

category are papillary, follicular, and hurthel cell carcinoma 

[3]. 

Although the cause of thyroid cancer is unknown, many 

studies have evaluated its risk factors. High-risk factors for 

DTC are radiation exposure of the head and neck region, 

chromosomal alterations such as RAS and BRAF gene 

mutations and PAX8/PPARγ fusion protein expression, and 
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hereditary conditions such as medullary thyroid cancer, 

syndromic and non-syndromic familial non-medullary thyroid 

cancer [4]. Traditionally, prophylactic cervical lymph node 

dissection, adjuvant radio-iodine ablation, and thyroid-

stimulating hormone (TSH) suppression with levothyroxine 

have been suggested as treatment methods to reduce the 

recurrence rate of DTC [5]. 

The prognosis of DTCs is generally good, and the mortality 

rate, although slightly increased in recent years, is generally 

low. For this reason, attention is mainly focused on the risk of 

recurrence, which the American Thyroid Association (ATA) 

risk classification predicts. Specifically, up to 20% of DTCs 

will experience recurrence, although this figure reduces to 5% 

in low-risk ATA patients[6]. One practical approach to 

analyzing and addressing such health cases is machine 

learning. 

Comprehensive research was conducted using machine 

learning in cancer detection. Research on thyroid cancer 

detection has been conducted by [7] with the highest accuracy 

score of 87% and AUC of 0.93 using the Logit Boost 

algorithm. Other research on thyroid cancer was conducted by 

[8] using the CNN algorithm with an accuracy score of 99%. 

Research on differentiated thyroid cancer recurrence was 

conducted by [9] using several algorithms, including Logistic 

Regression with 91% accuracy, Naive Bayes with 86% 

accuracy, Decision Tree with 91% accuracy, and KNN with 

90% accuracy. There is still little research on thyroid cancer 

prediction using a machine learning approach, especially the 

prediction of thyroid cancer recurrence for differentiated 

thyroid cancer patients using the Extreme Learning Machine 

algorithm and Hidden Markov Model algorithm. 

A method that is often used in machine learning is a Neural 

Network, often referred to as Artificial Neural Network 

(ANN). In an ANN, nodes are usually organized into layers, 

with each layer receiving input from the previous layer and 

passing its output to the next layer. Extreme Machine Learning 

(ELM) and Hidden Markov Model (HMM) are two 

algorithms that use the concept of ANN, both based on the 

concept of a network of nodes, where each node represents a 

mathematical function that receives some input and produces 

an output. 

Extreme Machine Learning (ELM) has a much faster 

training phase than other more common ANN algorithms, 

where, instead of using a long gradient-based approach like 

the back-propagation algorithm, ELM uses the pseudo inverse 

of the hidden layer to analytically determine the output 

weights [10]. ELM uses the concept that the input weights and 

bias values in the hidden layer are determined randomly, while 

the output weight values are calculated by utilizing the pseudo 

inverse of Moore-Penrose (MP) [11]. 

Research conducted by [12] to predict breast cancer using 

the ELM with the Wisconsin breast cancer diagnosis dataset, 

this study obtained an accuracy value of 98% on hidden 

neurons 250 and an F1 score of 0.81. Another study was 

conducted by [13] to classify epilepsy through physical 

activity using epilepsy using the ELM with an accuracy score 

of 100% at 920 hidden neurons and an AUC score of 0.99. 

Hidden Markov Model (HMM) is a statistical model 

designed using the Markov process with hidden states. 

Markov models adapt the concept of less-memory properties, 

where the transition from one state to another depends only on 

the current state. In HMM, the emitted symbols are 

observable, and the random transition from one state to 

another remains unobservable [14]. HMMs provide 

researchers with a probabilistic framework for inference and 

prediction and require fewer training samples, and thus have 

been applied to behavior recognition, speech recognition, and 

other fields [15]. 

Research on the HMM was conducted by [16] to classify 

Koranic recitation phenomena with a dataset of Koranic 

phonemes containing 21 verses from 30 reciters; this study 

achieved an accuracy value of 100% and a precision value of 

100. Another study was conducted by [17] to predict traffic 

congestion on neighboring roads using the HMM, the results 

showed the accuracy value reached 89%. 

In the medical and healthcare domains, the rarity of certain 

conditions or diseases naturally results in fewer instances of 

positive cases compared to normal or negative cases, leading 

to an imbalanced dataset. Such imbalances present unique 

challenges in machine and deep learning, as standard 

algorithms optimized for balanced datasets may not perform 

effectively, often overlooking the minority class, which 

usually represents the most crucial information to be predicted 

[18]. The dataset used is the Differentiated Thyroid Cancer 

Recurrence dataset taken from Kaggle. The dataset has 

imbalanced data in one of its classes, so a technique is needed 

to handle the problem. One of the techniques used to 

overcome class imbalance in data is the creation of synthetic 

data from the minority class, which is SMOTE. It works by 

augmenting the number of data instances in the minority class 

through the generation of synthetic data points from its nearest 

neighbors using Euclidean distance [19]. In research on 

SMOTE conducted by [20] to predict MBTI personality, this 

study compared several classification algorithms with 

SMOTE and without SMOTE. The Logistic Regression 

algorithm achieved the highest accuracy value of 82.82%, 

while Logistic Regression with SMOTE achieved an accuracy 

value of 83.37%. 

Based on the above, this research will use an Extreme 

Learning Machine and Hidden Markov Model with the 

SMOTE oversampling method to improve the performance of 

DTC recurrence prediction. The objective of this study is to 

compare the performance of ELM and HMM methods, both 

without and with the application of SMOTE in predicting the 

recurrence of differentiated thyroid cancer. The specific 

objectives in this study are to identify the best performing 

method and overcome the data imbalance often encountered 

in medical datasets increase the early detection rate of 

recurrence and improve the quality of life of patients.  

Research question: Which of the ELM and HMM methods 

is best for predicting the recurrence of differentiated thyroid 
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cancer? What is the effect of applying SMOTE to ELM and 

HMM in predicting this recurrence?The contributions of this 

research are: 

1. Providing knowledge about the effect of ELM and HMM 

algorithms on the prediction of the recurrence of 

differentiated thyroid cancer. 

2. Providing the knowledge about the effect of SMOTE on 

the prediction of the recurrence of differentiated thyroid 

cancer. 

3. Providing knowledge about the relationship between data 

science modeling and the health field, potentially 

improving patient care and health outcomes.  

 
II. METHOD 

The flowchart of this research can be represented in FIGURE 

1. This research employs Python for machine learning 

classification on the "Differentiated Thyroid Cancer 

Recurrence" dataset from Kaggle. The methodology 

comprises several stages. Initially, data preprocessing is 

conducted to convert categorical values into a numerical 

format using encoding techniques. Subsequently, the dataset 

is divided into training and testing sets across various 

proportions (90:10, 80:20, 70:30, 60:40, and 50:50) for 

comparative analysis. Due to class imbalance, SMOTE is 

applied to balance the data, and its impact on model 

performance is evaluated. Extreme Learning Machine and 

Hidden Markov Model are utilized for classification, and their 

outcomes are assessed using accuracy, precision, recall, and 

AUC metrics on the testing data. 

FIGURE 1. Research Flowchart 

 

A. DATA COLLECTION 

The data used in this study is the Differentiated Thyroid 

Cancer Recurrence dataset taken from the Kaggle website by 

Shiva Borzooei, Giovanni Briganti, Mitra Golparian, Jerome 

R. Lechien, and Aidin Tarokhian published in 2023. This 

dataset can be accessed through the following link: 

https://www.kaggle.com/datasets/joebeachcapital/differentiat

ed-thyroid-cancer-recurrence. The data was collected over 15 

years, and each patient was monitored for at least 10 years. 

The data consists of 383 records with 16 features and the last 

1 class is the target class, which is the recurrence status of 

differentiated thyroid cancer. The number of majority classes 

in this dataset is 275 (no), while the number of data in the 

minority class is 108 (yes). The percentage ratio for the (yes) 

and (no) classes is 72% and 28%, indicating an imbalance of 

classes in the data. The graph of data comparison on the 

Recurrence feature can be seen in FIGURE 2. 

FIGURE 2. Distribution of Recurred Feature 

 

This dataset is already good because there are no missing 

values, split data, or duplicate data, so the preprocessing 

carried out only transforms category data into numeric data 

with the encoding method. Details of the dataset features can 

be found in TABLE 1. 
TABLE 1 

Detail Dataset of Differentiated Thyroid Cancer Recurrence 

Variable Feature Name Range (count) 

Input 

Age 15 - 82 

Gender Female (312), Male (71) 

Smoking Yes (49), No (334) 

Hx Smoking Yes (28), No (355) 

Hx 

Radiothreapy 
Yes (7), No (376) 

Thyroid 

Function 

Clinical Hyperthyroidism (20), Clinical 

Hypothyroidism (12), Euthyroid (332), 

Subclinical Hyperthyroidism (5), 
Subclinical Hypothyroidism (14) 

Physical 

Examination 

Diffuse goiter (7), Multinodular goiter 
(140), Normal (7), Single nodular goiter-

left (89), Single nodular goiter-right 

(140) 
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TABLE 1 
(Continued) 

Variable Feature Name Range (count) 

Input 

Adenopathy 
Bilateral (32), Extensive (7), Left (17), 
No (277), Posterior (2), Right (48) 

Pathology 
Follicular (28), Hurthel cell (20), 

Micropapillary (48), Papillary (287) 

Focality Uni-Focal (247), Multi-Focal (136) 

Risk High (32), Intermediate (102), Low (249) 

T 
T1a (49), T1b (43), T2 (151), T3a (96), 

T3b (16), T4a (20), T4b (8) 

N N0 (268), N1a (22), N1b (93) 

M M0 (365), M1 (18) 

Stage I (333), II (32), III (4), IVA (3), IVB (11) 

Response 

Biochemical Incomplete (23), Excellent 

(208), Indeterminate (61), Structural 
Incomplete (91) 

Output Recurred Yes (108), No (275) 

B. PREPROCESSING 

Data preprocessing aims to optimize the data used by various 

ML algorithms and ultimately improve accuracy with lower 

computational performance [21]. The data used in this study 

is quite good because there are no missing values or duplicate 

data. So, the preprocessing done in this research transforms 

category variables into numeric data using the encoding 

method. The preprocessing step in this study uses the library 

from sklearn.preprocessing from skicit-learn. For features that 

have two classes, such as “yes” and “no” use label encoding, 

while for features that have more than two classes use a one-

hot encoding. Label encoding simply assigns an integer value 

to each possible value of a categorical variable [22]. One-hot 

encoding, on the other hand, creates a new variable for each 

categorical feature level, and each category is mapped to a 

binary variable containing 0 or 1 [23].  

The label encoding method is applied to the features Age, 

Gender, Smoking, Hx Smoking, Hx Radiothreapy, Focality, 

and Recurred. While the one-hot encoding method is applied 

to the features of Thyroid Function, Physical Examination, 

Adenopathy, Pathology, Risk, T, N, M, Stage, and Response. 

So the dataset, which initially had 16 features and one target 

class, turned into 50 features and one target class. TABLE 2 

shows the sample dataset "Differentiated Thyroid Cancer 

Recurrence" before preprocessing, and TABLE 3 shows the 

sample dataset "Differentiated Thyroid Cancer Recurrence" 

after preprocessing. 

TABLE 2 
Dataset Sample Before Preprocessing 

Age Gender Smoking 
Hx 

Smoking 

Thyroid 

Function 

Physical 

Examination 
… Pathology Focality Risk T Recurred 

27 F No No Euthyroid 

Single 

nodular 

goiter-left 

… Micropapillary 
Uni-

Focal 
Low T1a No 

34 F No Yes Euthyroid 
Multinodular 

goiter 
… Micropapillary 

Uni-

Focal 
Low T1a No 

62 F No No Euthyroid 

Single 

nodular 

goiter-right 

… Micropapillary 
Uni-
Focal 

Low T1a No 

52 M Yes No Euthyroid 
Multinodular 

goiter 
… Micropapillary 

Multi-

Focal 
Low T1a No 

… … … … … … … … … … … … 

81 M Yes No Euthyroid 
Multinodular 

goiter 
… Papillary 

Multi-

Focal 
High T4b Yes 

72 M Yes Yes Euthyroid 
Multinodular 

goiter 
… Papillary 

Multi-
Focal 

High T4b Yes 

61 M Yes Yes 
Clinical 

Hyperthyroidism 

Multinodular 

goiter 
… Hurthel cell 

Multi-

Focal 
High T4b Yes 

67 M Yes No Euthyroid 
Multinodular 

goiter 
… Papillary 

Multi-

Focal 
High T4b Yes 

 
TABLE 3 

Dataset Sample After Preprocessing 

Age Gender Smoking 
Hx 

Smoking 

Thyroid 

Function_ 

Euthyroid 

Physical 

Examination_ 

Single 

nodular 

goiter-right 

… 
Adenopathy_ 

Bilateral 

Pathology_ 

Papillary 

Risk_ 

High 

T_ 

T4b 
Recurred 

27 0 0 0 1 0 … 0 0 0 0 0 

34 0 0 1 1 0 … 0 0 0 0 0 

62 0 0 0 1 1 … 0 0 0 0 0 

52 1 1 0 1 0 … 0 0 0 0 0 

81 1 1 0 1 0 … 0 1 1 0 1 

72 1 1 1 1 0 … 1 1 1 0 1 

61 1 1 1 0 0 … 0 0 1 0 1 

67 1 1 0 1 0 … 1 1 1 0 1 
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C. DATA SHARING 

Before performing classification, the dataset is divided into 

two parts, namely training data and testing data. Training data 

is used to train the machine learning algorithm model while 

testing data is used to evaluate the performance of the pre-

trained model. Using split data, training data, and testing data 

in this study are divided into several proportions, which are 

90:10, 80:20, 70:30, 60:40, and 50:50. The data sharing 

process in this study uses the train_test_split library from 

skicit-learn. 

D. SMOTE 

Class imbalance is defined as a skewed distribution of 

instances found in a data set among classes in binary and 

multiclass problems. This asymmetry in class distribution 

negatively impacts classifier performance, especially in 

multiclass problems. The problem would come from the fact 

during the learning phase, the classifier is optimized to 

maximize the objective function, with overall accuracy being 

the most common. Unbalanced learning has been addressed in 

three different ways: over/undersampling, cost-sensitive 

training, and changes/adaptations in the learning algorithm. 

Since resampling strategies represent a set of methods that are 

independent of the classifier by operating at the data level, 

they allow the use of any available algorithm without requiring 

any type of change or adaptation to the algorithm. In 

particular, in the case of oversampling, the user can balance 

the class distribution of the data set without losing 

information, which is not the case with undersampling 

techniques [24]. 

Synthetic Minority Oversampling Technique (SMOTE) is 

an approach that uses 'synthetic' examples to oversample 

minority classes to resolve imbalanced data. Using synthetic 

examples in 'feature space' rather than 'data space' means that 

SMOTE is performed based on the values and characteristics 

of the data relationships rather than focusing on all data points. 

SMOTE works by inserting synthetic cases along the line 

connecting any or all of the k-nearest neighbors of each 

minority class and over-sampling each minority class. The k-

nearest neighbors are randomly selected based on the amount 

of oversampling required [20]. 

The SMOTE algorithm was proposed by Chaw La in 2002, 

and it is an improvement method based on ROS (Random 

Over Sampling). In the SMOTE algorithm, new samples are 

generated based on the original samples, which has a greater 

probability of obtaining effective features than random new 

sampling. The SMOTE algorithm selects a line connecting the 

two original samples as the new sample range and determines 

a point on the line as the new sample. The steps of the SMOTE 

algorithm are as follows [25]: 

Step 1: For each sample x in the training set, calculate the 

Euclidean distance to each minority class sample xi, and get 

the k nearest neighbors of each minority class sample. 

Step 2: According to the degree of sample imbalance, set the 

sampling ratio N. For xi, randomly select N samples from its k  

nearest neighbors, denoted by xh. 

Step 3: Based on Eq. (1) [25], generate new samples based on 

xi and xh until the classes are balanced, denoted by xnew. 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑥ℎ − 𝑥𝑖) (1) 

where xnew is New synthetic sample, xi is Original minority 

sample, and xh is Nearest neighbour sample. 

SMOTE generates fictional data based on the space 

characteristic similarities of minority modules [26]. Over the 

past decade, SMOTE has proven its utility across multiple 

domains, resulting in significant contributions to a wide range 

of applications [27]. This method helps to balance out the class 

distribution, thus allowing classifiers to learn more effectively 

from the data and improving their ability to generalize to 

minority class instances [28]. 

In the dataset used in this study, there is imbalanced data 

on the 'Recurred' feature with a ratio of 72% for the 'No' class 

and 28% for the 'Yes' class, applying the SMOTE technique 

to balance the data is necessary. After several experiments 

using the accuracy, precision, recall, and AUC values to 

determine how many k-nearest neighbors and random states 

are the most optimal, the k-nearest neighbor is 5 and the 

random state is 42 for modeling with Extreme Learning 

Machine, while the Hidden Markov Model modeling obtained 

the most optimal k-nearest neighbor is 4 and the random state 

is 42. For research with the sharing of training data and testing 

data with a proportion of 90:10, the 'Yes' and 'No' classes each 

have 247 data; at a proportion of 80:20, each class has 217 

data; at a proportion of 70:30, each class has 192 data; at a 

proportion of 60:40, each class has 163 data; and at a 

proportion of 50:50, each class has 133 data. 

E. CLASSIFICATION 

In machine learning, classification refers to the prediction 

problem of determining the class to which samples from a data 

set will be assigned. A classifier algorithm must be provided 

with training data with labeled classes. Then, the classifier can 

predict the class for new test data based on the training data. 

This approach is called supervised learning, and classification 

is one example of such a method. The training set is chosen as 

a subset of the overall data set. The general approach is to 

divide the known samples into training and testing sets, 

following some general principles about the ratio of the two. 

Ultimately, the test set includes a much smaller number of 

samples than the training set (preferably, the test set and 

training set should be separate). The test set is used to evaluate 

the classification quality. Classification algorithms for 

prediction problems are evaluated based on performance. 

Various measures to assess classification quality can be used 

depending on the situation. One of the most commonly used 

measures is accuracy, which determines how many samples 

from the entire data set are correctly classified into the 

appropriate class [29]. 

This research uses Extreme Learning Machine and Hidden 

Markov Model classification algorithms to predict the 

recurrence of differentiated thyroid cancer. Both ELM and 

HMM use the basic concept of a network consisting of nodes 

(neurons). Each node receives input, involves a mathematical 
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pre-calculation process, and produces an output. The reason 

for choosing these two classification algorithms for predicting 

the recurrence of differentiated thyroid cancer is because the 

mathematical model of ELM is simpler and more effective in 

predicting the output quickly and accurately. In addition, 

although HMM is highly complex, it can predict unobserved 

states, such as factors that affect the state of cancer. Several 

algorithms can be used to predict thyroid cancer recurrence, 

such as Neural Network, Random Forest, or Support Vector 

Machine. However, ELM and HMM have better advantages 

in predicting thyroid cancer recurrence. ELM can predict the 

output quickly and accurately, while HMM can predict the 

unobserved state directly. 

1. EXTREME LEARNING MACHINE 

Recently, there has been an approach called Extreme Machine 

Learning (ELM) for training Single-Layer Feedforward 

Neural Network (SLFN). ELM introduces a unique approach 

where hidden nodes are initialized randomly and kept fixed 

without repeated tuning [30]. ELMs have become popular 

because they deliver relatively high accuracy and cross-

domain adaptation with low time consumption. In addition, 

ELMs have superior generalization capabilities and less 

training time than deep network models, as they do not require 

iterative processes to tune parameters [31]. 

ELM requires a sufficient number of neurons in the hidden 

layer to obtain good performance and fast convergence. The 

difference between ELM and other traditional Machine 

Learning (ML) models that typically use gradient descent-

based algorithms is that ELM uses randomly determined input 

weights and bias values that do not change during the learning 

process. This approach prevents some of the problems that 

usually accompany gradient descent methods, such as 

repeated adjustments to the weight and bias values, staying at 

a local minimum, and slowing down the speed of 

convergence. However, the correct number of neurons to 

create the hidden layer is still one of the open questions facing 

ELMs [11]. The architecture diagram of the Extreme Machine 

Learning algorithm can be seen in FIGURE 3 below [32]: 

FIGURE 3. The Architecture Diagram of Extreme Learning Machine 

 

The stages of the ELM algorithm are generally as follows 

[33]: 

Given a training set N = {(xi, ti) | xi ∈ Rn, ti ∈ Rm, i = 1, ..., 

N}, an activation function, and the number of hidden layers N. 

1. Set the input weights (wi) and bias (bi, i = 1, ..., N). 

Randomly assign input weight values in the value range -

1 to 1 and bias values in the value range 0 to 1. 

2. Calculate the output matrix of the hidden layer. 

Calculate the result of the output matrix of the hidden layer 

(Hinit) using Eq. (2) [33]. 

𝐻𝑖𝑛𝑖𝑡 =  𝑋 × 𝑊𝑇 + 𝑏 (2) 

𝐻𝑖𝑛𝑖𝑡 = Hidden layer output matrix 

𝑋 = Input data 

𝑊𝑇= Transpose of weight matrix 

𝑏 = bias 

Then, the resultant hidden layer output matrix is activated 

with a specific activation function. The purpose of the 

activation function is to incorporate nonlinearity into the 

model. This research uses a binary sigmoid activation 

function, the formula of the binary sigmoid activation 

function is written in Eq. (3) [33]. 

𝐻 =
1

1+𝑒𝑥𝑝−𝐻𝑖𝑛𝑖𝑡 (3) 

𝐻 = Activated hidden layer output matrix 

3. Calculating the output weights (β). 

The output layer weights written in Eq. (5) [33] are 

calculated using the generalized Moore-Penrose inverse of 

the hidden layer output matrix written in Eq. (4) [33]. 

𝐻+ = (𝐻𝑇𝐻)−1𝐻𝑇  (4) 

𝐻+= Generalised Moore-Penrose inverse of H matrix 

𝐻𝑇= Transpose of H matrix 

𝐻= Activated hidden layer output matrix 

𝛽 = 𝐻+𝑇 (5) 

𝛽 = Output weight matrix 

𝑇 = Target value 

After training, the next step is testing data, which aims to 

evaluate the previous ELM method training process. Given a 

set of testing data N = {(x¬i, ti¬) | xi ∈ Rn, ti ∈ Rm, i = 1, ..., 

N}. The steps of the testing process are as follows: 

1. Initialize the input weights (wi) and bias (b) from the 

previous training process. 

2. Calculate the output matrix of the hidden layer. 

3. Calculating the predicted f(x) written in Eq. (6) [33] value 

that will be compared with the target value, the output 

weight value used is obtained from the previous training 

process. 

𝑓(𝑥) = 𝐻𝛽 (6) 

𝑓(𝑥) = Predicted value 

𝐻 = Activated hidden layer output matrix 

𝛽 = Output weight matrix 

The strength of ELM is that the absence of iteration makes 

the training process simpler enabling faster and more efficient 

prediction of the recurrence of differentiated thyroid cancer 

faster and with high efficiency. The weakness of ELM is that 

it requires more hidden neurons to achieve the best 

performance than conventional neural networks [34]. 
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ELM modeling in this study uses the ELMClassifier library 

from Skicit-ELM, which tests the number of hidden neurons 

from 5 to 50 with a multiple of 5. To ensure that the research 

results obtained are optimal, several parameter adjustment 

experiments were carried out so that the activation function 

used was Binary Sigmoid, the random state was 42 for ELM 

modeling without SMOTE, and the random state was 43 for 

ELM modeling with SMOTE. 

2. HIDDEN MARKOV MODEL 

HMM is a mathematical model that infers the pattern of the 

observed state sequence by assuming that an unknown state 

sequence can produce a known observation sequence. HMMs 

are based on Markov processes consisting of multiple states 

and the transition relationships between them. Given this, 

HMMs provide researchers with a probabilistic framework for 

inference and prediction and require fewer training samples, 

and thus have been applied to behavior recognition, speech 

recognition, natural language processing, error detection, 

economic forecasting, earthquake prediction, hydrological 

prediction, and other fields [15]. 

In an HMM, the system is represented as a Markov process 

with states invisible to the observer but with visible outputs 

(observations) that are random functions of the states. HMM 

can be defined as a machine learning model, specifically as a 

discrete method, which is a statistical strategy for modeling 

systems intended to contain Markov processes with hidden 

states [35]. In addition, in the application of HMMs, ANNs, 

and genetic algorithms are combined to forecast financial 

market behavior, which can be applied to in-depth stock 

market analysis. HMMs are also used for credit card fraud 

detection, where HMMs are trained with 'normal' cardholder 

behavior to identify suspicious operations detected by the low 

probability given by the HMM [36]. 

The five essential components that make up the hidden 

Markov model are the number of states, the number of distinct 

observations, the state transition model, the observation 

model, and the initial state distribution. To determine the 

observation probabilities, the forward algorithm is adopted, 

while to predict the sequence of hidden states in the available 

data, the Viterbi algorithm is used. The learning stage of the 

HMM is performed using the EM algorithm [37]. 

HMM is a statistical model that describes a Markov process 

with unknown parameters. The model contains two random 

lines: an unobservable hidden line I and an observable line O. 

The hidden line I is a random line that can affect the 

observable line O and cannot be directly observed or obtained. 

The observable row O is a random row that can be directly 

observed or obtained under the influence of the hidden row I. 

In HMM, the form of the hidden row I is written in Eq. (7) 

[38]: 

𝐼 = (𝑖1, 𝑖2, … , 𝑖𝑇)    (7) 

The shape of the O line that can be observed in Eq. (8) [38]: 

𝑂 = (𝑜1, 𝑜2, … , 𝑜𝑇)  (8) 

In HMM, the hidden Markov chain randomly generates the 

hidden lineup I, and then the observable lineup O is generated 

from each state of the hidden lineup. FIGURE 4 shows the 

relationship between the hidden lineup and the observable 

lineup in HMM. 

FIGURE 4. The Relationship Between The Hidden Line and The 
Observable Line in An HMM 

 

The HMM can be expressed by an initial probability 

distribution π, a state transition matrix A, and an emission 

matrix B. Where the initial probability distribution π written 

in Eq. (9) [38] represents the probability distribution of the 

initial hidden state: 

𝜋 = (𝑝, 𝑝2, … , 𝑝𝑁) (9) 

The state transition matrix A written in Eq. (10) [38] 

represents the probability that the hidden sequence is qj at time 

t + 1 in the case that the hidden state is qi at time t: 

𝐴 = [𝑎𝑖𝑗], 𝑎𝑖𝑗 = 𝑃(𝑖𝑡+1 = 𝑞𝑗|𝑖𝑡 = 𝑞𝑖) (10) 

The emission matrix B written in Eq. (11) [38] represents the 

probability that the observation sequence is vk when the 

hidden state is qj at time t: 

𝐵 = [𝑏𝑖(𝑘)], 𝑏𝑖(𝑘) = 𝑃(𝑜𝑡 = 𝑣𝑘|𝑖𝑡 = 𝑞𝑖) (11) 

Considering all of the above, for convenience, the following 

compact notation is typically used to denote the entire set of 

parameters that characterize the HMM written in Eq. (12) 

[39]: 

λ = (A, B, π) (12) 

Depending on how the HMM is applied, there are three 

different problems that can be defined [40]: 

1. Evaluation problem 

The goal is to compute the likelihood p(O|λ) for a given 

set of observations O through. In general, a forward-

backward algorithm is applied to solve this problem. 

2. The learning problem  

Involves adjusting the inputs of the modes λ  to improve 

the likelihood of the observation series p(O|λ). 

Expectation-maximization (EM) algorithms are often 

used to learn HMMs. 

3. Decoding problem 

What is the most probable state set of the model λ that 

generates the observation series O? The Viterbi 

algorithm is mainly applied to solve this problem. 

Viterbi algorithm can generate the hidden state sequence 

that best matches the observed state sequence, 

identifying the most probable path corresponding to the 

observed trajectory in the road network [41]. 
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Hidden Markov Models (HMMs) are highly effective in 

predicting unobserved states, a crucial function in various 

applications such as disease diagnosis and prognosis. Their 

adaptability is particularly evident in bioinformatics, where 

they are widely used for tasks such as protein sequence 

alignment and gene prediction. However, the high 

computational complexity of HMMs is a significant 

drawback. The model's reliance on accurate calculations and 

precise inputs can limit its computational efficiency. In certain 

applications, such as unit selection in speech synthesis, HMMs 

can be overly restrictive due to their single-path output, 

thereby limiting their ability to generate variation which is 

often desirable in tasks that require expressive output [42]. 

HMM with and without SMOTE modeling in this study 

uses the Gaussian HMM library from hmmlearn, which tests 

the number of hidden states from 1 to 10 and iterations from 1 

to 5. To ensure that the research results obtained were optimal, 

several parameter adjustment experiments were carried out so 

that the covariance type used was 'diag', the decoder algorithm 

used was Viterbi, and the random state was 1. 

F. EVALUATION 

1. CONFUSION MATRIX 

Confusion Matrix is one of the classic decision measurement 

methods in supervised machine learning. This matrix 

visualizes the degree of confusion of algorithms in different 

classifications and is independent of a particular classification 

algorithm. The columns of the confusion matrix represent the 

predicted class results, and the rows represent the actual class 

results [43]. 

Confusion Matrix is defined as a matrix that provides a 

mixture of predicted and actual class instances. It allows the 

definition of various performance metrics (e.g., accuracy, 

precision, gain, Mathews correlation coefficient, etc.) or 

techniques such as Receiver Operating Characteristic (ROC) 

and Area Under Curve (AUC). In binary classification, all 

performance metrics and ROC analysis can be applied. There 

is a set of performance metrics that can be applied to the 

confusion matrix of a classification problem to assess an 

algorithm or compare the performance of different algorithms. 

The confusion matrix for binary classification is presented in 

TABLE 4. Each column of the matrix represents an instance 

of the predicted class, while each row represents an instance 

of the actual class. The confusion matrix has a dimension of 2 

x 2, where one label is considered 'Positive' and the other label 

is considered 'Negative'. The matrix elements are 

characterized by the predicted label (positive, negative) and 

the result of comparing the predicted class label with the actual 

class label (true false): True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN) [44]. 
TABLE 4 

Confusion Matrix 

The quality of the classifier is measured based on the 

confusion matrix. Measurements based on the confusion 

matrix include, but are not limited to, accuracy, precision, and 

recall. Accuracy written in Eq. (13) [29] indicates how often 

the classifier makes correct predictions; it is the ratio of the 

number of accurate predictions to the total number of 

predictions [29]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (13) 

Where TP means that samples from the actual class have been 

classified into the same predicted class. FN indicates that 

samples in the actual class have been classified into other 

predicted classes. FP indicates that samples from other real 

classes have been classified into the selected predicted class. 

TN indicates that, for the selected real class, samples from 

other actual classes were classified into predicted classes other 

than the predicted classcorresponding to the chosen real class. 

Precision written in Eq. (14) [29] determines how many 

samples, out of all those classified as positive, are samples of 

the positive class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (14) 

Recall written in Eq. (15) [29] is used to determine how many 

samples belonging to the positive class were classified as 

positive by the classifier. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (15) 

The accuracy of a classification model is an important 

metric for measuring how often the model correctly predicts 

the class or label of a given data point. Precision measures the 

proportion of correctly predicted positive examples out of all 

examples predicted as positive. And recall calculates the 

proportion of correctly predicted positive examples out of all 

true positive examples. Furthermore, precision and recall are 

critical to understanding the model's ability to minimize false 

positives and false negatives [45], [46]. 

2. AUC 

Area Under Curve (AUC) is a standard method for calculating 

probabilities in mathematical statistics through linear 

summation for discrete variables or integration for continuous 

variables [47]. Area Under Curve (AUC), known as the AUC 

statistic or c statistic, is a quantitative measure of Receiver 

Operating Characteristic (ROC). ROC is a two-dimensional 

performance measure of a credit scoring model. The AUC 

measures the predictive accuracy of the credit scoring model. 

The larger the AUC, the more accurate the model. AUC is the 

sum of the areas of the triangle, rectangle, and trapezoid [48]. 

Although often used in research dealing with biological 

markers such as daily cortisol and ROC curves to identify cut-

off points, AUC has recently been used in other research fields 

(e.g., dentistry and sleep research) [49]. 

The ROC curve (Receiver Operating Characteristic curve) 

plots the True Positive Rate (TPR) written in Eq. (16) [45] 

versus the False Positive Rate (FPR) written in Eq. (17) [45] 

at different classification thresholds. 

Classification 
Prediction 

Positive Negative 

Actual 
Positive True Positive True Negative 

Negative False Positive False Negative 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 6, No. 4, October 2024, pp: 429-444;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              437               

𝑇𝑃𝑅 =
∑ 𝑇𝑃

∑ 𝑇𝑃+∑ 𝐹𝑁
 (16) 

𝐹𝑃𝑅 =
∑ 𝐹𝑃

∑ 𝑇𝑁+∑ 𝐹𝑃
 (17) 

AUC evaluates the model's ability to distinguish between 

classes by plotting the true positive rate against the false 

positive rate. The higher the AUC, the higher the TPR, which 

indicates that the model is performing well. Accuracy metrics 

can be misleading if the classes are imbalanced, meaning one 

class has more examples. AUC is a robust metric less affected 

by class imbalance and provides a comprehensive view of the 

model's performance across all thresholds [45].  
TABLE 5 

AUC Interpretation 

Area Under The Curve 

(AUC) 
Interpretation 

0,9 <= AUC Excellent 

0,8 <= AUC <= 0,9 Good 

0,7 <= AUC <= 0,8 Fair 

0,6 <= AUC <= 0,7 Poor 

0,5 <= AUC <= 0,6 Fail 

AUC stands for “Area Under the ROC Curve”. An ideal ROC 

curve thus has AUC = 1.0 [50]. 

For the diagnosis test to be more accurate, the AUC should be 

greater than 0.5. Generally, an AUC ≥ 0.8 is considered 

acceptable [51]. 

III. RESULTS 

This section shows the performance of each model to detect 

recurrence of thyroid cancer, using Extreme Learning 

Machine, Extreme Learning Machine with SMOTE, Hidden 

Markov Model, and Hidden Markov Model with SMOTE. 

The performance of each model is evaluated with accuracy, 

precision, recall, and AUC values.  

A. EXTREME LEARNING MACHINE 

In this study, the first classification is using the Extreme 

Machine Learning algorithm. The activation function used in 

this study is a Binary Sigmoid activation function, and The 

random state used is 42. Meanwhile the neurons tested in the 

hidden layer numbered 5 to 50 with a multiple of 5. The 

evaluation results of the ELM model performance can be 

observed in TABLE 6. Each data split ratio obtained an 

evaluation value for each hidden neuron tested. 

The best evaluation results of classification with ELM 

based on each data division ratio are as follows: 

• At a ratio of 90:10 get the best results on 45 neurons with 

an accuracy value of 1.00, precision 1.00, recall 1.00, and 

AUC 1.00. 

• At a ratio of 80:20, the best results were obtained on 

hidden neurons 45 with an accuracy value of 0.974, 

precision of 0.9651, recall of 0.9651, and AUC of 

0.9973. 

• At a ratio of 70:30, the best results were obtained for 

hidden neuron 50, with an accuracy value of 0.9391, 

precision 0.9278, recall 0.9194, and AUC 0.9684. 

• At a ratio of 60:40, the best results were obtained for 

hidden neuron 30, with an accuracy value of 0.9416, 

precision of 0.9238, recall of 0.9301, and AUC of 

0.9973. 

• At a ratio of 50:50, the best results were obtained on 

hidden neuron 45, with an accuracy value of 0.9531, 

precision of 0.9368, recall of 0.9424, and AUC of 

0.9744. 

TABLE 6 
ELM Performance 

ELM 
Hidden Neuron 

5 10 15 20 25 30 35 40 45 50 

90:10 

Accuracy 0.6923 0.8462 0.9487 0.9487 0.9744 0.9744 0.9744 0.9744 1.0000 1.0000 

Precision 0.3553 0.8101 0.9367 0.9367 0.9828 0.9828 0.9828 0.9828 1.0000 1.0000 

Recall 0.4821 0.8101 0.9367 0.9367 0.9545 0.9545 0.9545 0.9545 1.0000 1.0000 

AUC 0.8929 0.9578 0.9870 0.9935 0.9935 0.9968 1.0000 1.0000 1.0000 1.0000 

80:20 

Accuracy 0.7922 0.8701 0.9091 0.9221 0.9351 0.9610 0.9610 0.9610 0.9740 0.9740 

Precision 0.7958 0.8435 0.8828 0.8952 0.9075 0.9553 0.9553 0.9553 0.9651 0.9651 

Recall 0.5966 0.7899 0.8689 0.8952 0.9215 0.9387 0.9387 0.9387 0.9651 0.9651 

AUC 0.8630 0.9728 0.9256 0.9628 0.9837 0.9855 0.9964 0.9964 0.9973 0.9964 

70:30 

Accuracy 0.7652 0.8522 0.8783 0.9043 0.9217 0.9304 0.9217 0.9217 0.9391 0.9391 

Precision 0.8082 0.8333 0.8590 0.8836 0.8999 0.9134 0.9134 0.9134 0.9278 0.9278 

Recall 0.5877 0.7824 0.8293 0.8761 0.9074 0.9134 0.8882 0.8882 0.9194 0.9194 

AUC 0.8151 0.9608 0.9349 0.9721 0.9703 0.9849 0.9883 0.9774 0.9646 0.9684 

60:40 

Accuracy 0.7597 0.8571 0.8896 0.9156 0.9286 0.9416 0.9221 0.9286 0.9351 0.9416 

Precision 0.8061 0.8407 0.8719 0.9011 0.9077 0.9238 0.9068 0.9125 0.9182 0.9238 

Recall 0.5670 0.7827 0.8423 0.8824 0.9137 0.9301 0.8943 0.9063 0.9182 0.9301 

AUC 0.7725 0.9505 0.9428 0.9588 0.9711 0.9828 0.9619 0.9722 0.9779 0.9630 

50:50 

Accuracy 0.7708 0.8802 0.9115 0.9115 0.9427 0.9427 0.9427 0.9375 0.9531 0.9271 

Precision 0.8207 0.8524 0.8910 0.8805 0.9234 0.9234 0.9333 0.9189 0.9368 0.9097 

Recall 0.5665 0.8283 0.8754 0.8948 0.9289 0.9289 0.9159 0.9189 0.9424 0.8989 

  AUC 0.7556 0.9546 0.9393 0.9627 0.9675 0.9811 0.9666 0.9689 0.9744 0.9680 
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B. EXTREME LEARNING MACHINE WITH SMOTE 

The second classification in this study is using the Extreme 

Learning Machine algorithm combined with SMOTE. The 

dataset used has imbalanced data, namely the class of 

recurrence after treatment with a percentage of 28% while the 

class of no recurrence after treatment with a percentage of 

72%, so using the SMOTE method to deal with the problem 

of data imbalance. The SMOTE parameters used are k nearest 

neighbors of 5 and random state of 42, while the ELM 

modeling uses a Binary Sigmoid activation function and 

random state 43. The evaluation results of the ELM with 

SMOTE model performance can be observed in TABLE 7. 

The best evaluation results of classification with ELM with 

SMOTE based on each data division ratio are as follows: 

• At a ratio of 90:10 get the best results on 35 neurons with 

an accuracy value of 1.00, precision 1.00, recall 1.00, and 

AUC 1.00. 

• At a ratio of 80:20, the best results were obtained on 

hidden neurons 35 with an accuracy value of 1.00, 

precision of 1.00, recall of 1.00, and AUC of 1.00. 

• At a ratio of 70:30, the best results were obtained for 

hidden neuron 35, with an accuracy value of 0.9565, 

precision 0.9324, recall 0.9699, and AUC 0.9974. 

• At a ratio of 60:40, the best results were obtained for 

hidden neuron 50, with an accuracy value of 0.9286, 

precision 0.8962, recall 0.9509, and AUC 0.9909. 

• At a ratio 50:50, the best results are obtained at hidden 

neuron 45 with an accuracy value of 0.9167, precision 

0.8789, recall 0.9372, and AUC 0.9856. 

C. HIDDEN MARKOV MODEL

The third classification in this study is using the Hidden 

Markov Model algorithm. The covariance type used is diag, 

the decoder algorithm used is the Viterbi algorithm, and 

random state of 1. Meanwhile the parameters tested in this 

study are the number of hidden states and the number of 

iterations, hidden states are 1 to 10, and iteration are 1 to 5. 

The evaluation results of the HMM model performance can be 

observed in TABLE 8.  

The best evaluation results of classification with HMM 

based on each data division ratio are as follows: 

• At a ratio of 90:10 get the best results on hidden state 1 

and 1 iteration with an accuracy value of 0.7179, 

precision 0.3590, recall 0.5, and AUC 0.5. 

• At a ratio of 80:20, get the best results on hidden state 2 

and 3 iterations with an accuracy value of 0.8571, 

precision 0.8474, recall 0.7459, and AUC 0.96. 

• At a ratio of 70:30, get the best results on hidden state 1 

and 1 iteration with an accuracy value of 0.7217, 

precision 0.3608, recall 0.5, and AUC 0.5. 

• At a ratio of 60:40, get the best results in hidden state 2 

and 3 iterations with an accuracy value of 0.8636, 

precision 0.8471, recall 0.7946, and AUC 0.9343. 

• At a ratio of 50:50, get the best results on hidden state 1 

and 1 iteration with an accuracy value of 0.7395, 

precision 0.3697, recall 0.5, and AUC 0.5.

TABLE 7 

ELM + SMOTE Performance 

ELM + SMOTE 
Hidden Neuron 

5 10 15 20 25 30 35 40 45 50 

90:10 

Accuracy 0.5897 0.8205 0.8718 0.8718 0.8974 0.8718 1.0000 1.0000 0.9744 1.0000 

Precision 0.6332 0.7908 0.8371 0.8371 0.8734 0.8483 1.0000 1.0000 0.9828 1.0000 

Recall 0.6591 0.8474 0.8831 0.8831 0.8734 0.8279 1.0000 1.0000 0.9545 1.0000 

AUC 0.8247 0.9545 0.9383 0.9416 0.9838 0.9805 1.0000 1.0000 1.0000 1.0000 

80:20 

Accuracy 0.4545 0.7792 0.8961 0.8831 0.9610 0.9610 1.0000 1.0000 1.0000 1.0000 

Precision 0.5582 0.7531 0.8504 0.8364 0.9318 0.9412 1.0000 1.0000 1.0000 1.0000 

Recall 0.5672 0.8358 0.9133 0.8693 0.9741 0.9564 1.0000 1.0000 1.0000 1.0000 

AUC 0.7069 0.9564 0.9655 0.9229 0.9946 0.9973 1.0000 1.0000 1.0000 1.0000 

70:30 

Accuracy 0.5391 0.7739 0.8609 0.8783 0.9217 0.9217 0.9565 0.9478 0.9565 0.9478 

Precision 0.6175 0.7614 0.8268 0.8425 0.8909 0.8909 0.9324 0.9211 0.9324 0.9242 

Recall 0.6327 0.8242 0.8844 0.8869 0.9362 0.9362 0.9699 0.9639 0.9699 0.9543 

AUC 0.7195 0.9239 0.9571 0.9420 0.9853 0.9921 0.9974 0.9951 0.9944 0.9872 

60:40 

Accuracy 0.5325 0.7273 0.8377 0.8766 0.8961 0.8896 0.9286 0.9221 0.9221 0.9286 

Precision 0.6188 0.7303 0.7988 0.8394 0.8610 0.8535 0.8962 0.8889 0.8889 0.8962 

Recall 0.6339 0.7902 0.8512 0.8929 0.9211 0.9092 0.9509 0.9464 0.9464 0.9509 

AUC 0.7277 0.9014 0.9237 0.9392 0.9841 0.9753 0.9824 0.9841 0.9855 0.9909 

50:50 

Accuracy 0.5208 0.6927 0.7865 0.8594 0.8854 0.8750 0.8802 0.9010 0.8958 0.9167 

Precision 0.5925 0.7004 0.7488 0.8186 0.8472 0.8347 0.8409 0.8617 0.8557 0.8789 

Recall 0.6113 0.7599 0.8103 0.8855 0.9225 0.9025 0.9125 0.9266 0.9166 0.9372 

AUC 0.7431 0.8830 0.9104 0.9407 0.9818 0.9690 0.9687 0.9766 0.9738 0.9856 
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D. HIDDEN MARKOV MODEL WITH SMOTE 

The forth classification in this study is using the Hidden 

Markov Model algorithm by combining SMOTE. The 

SMOTE parameters used are k-nearest neighbors of 4 and 

random states of 42, while the HMM modeling uses .diag for 

covariance type, Viterbi algorithm for decoder algorithm, and 

random state of 1. The evaluation results of the HMM with 

SMOTE model performance can be observed in TABLE 9. 

The best evaluation results of classification with HMM with 

SMOTE based on each data division ratio are as follows: 

• At a ratio of 90:10 get the best results on hidden state 2 

and 4 iterations with an accuracy value of 0.8461, 

precision 0.8504, recall 0.7548, and AUC 0.9594. 

• At a ratio of 80:20, get the best results on hidden state 2 

and 2 iterations with an accuracy value of 0.8312, 

precision 0.8505, recall 0.6756, and AUC 0.8884. 

• At a ratio of 70:30, get the best results on hidden state 2 

and 2 iterations with an accuracy value of 0.8696, 

precision 0.8832, recall 0.7848, and AUC 0.9174. 

• A t a ratio of 60:40, get the best results on hidden state 1 

and 1 iteration with an accuracy value of 0.7273, 

precision of 0.3636, recall 0.5, and AUC 0.5. 

• At a ratio of 50:50 get the best results on hidden state 1 

and 1 iteration with an accuracy value of 0.7395, 

precision 0.3697, recall 0.5, and AUC 0.5. 

TABLE 8 
HMM Performance with 5 iterations 

Hidden 

State 

Accuracy Precision Recall AUC 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

90:10 

1 0.72 0.72 0.72 0.72 0.72 0.36 0.36 0.36 0.36 0.36 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

2 0.13 0.15 0.15 0.18 0.18 0.13 0.18 0.18 0.22 0.22 0.20 0.22 0.22 0.24 0.24 0.08 0.17 0.18 0.18 0.21 

3 0.51 0.46 0.44 0.44 0.44 0.57 0.57 0.56 0.56 0.56 0.33 0.31 0.29 0.29 0.29 0.95 0.94 0.94 0.95 0.96 

…                    … 

8 0.03 0.05 0.05 0.05 0.05 0.13 0.25 0.19 0.19 0.19 0.01 0.02 0.02 0.02 0.02 0.66 0.55 0.55 0.55 0.55 

9 0.15 0.28 0.28 0.21 0.21 0.11 0.11 0.13 0.11 0.11 0.02 0.04 0.05 0.03 0.03 0.14 0.13 0.13 0.13 0.21 

10 0.08 0.08 0.08 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.01 0.01 0.01 0.02 0.02 0.85 0.59 0.59 0.59 0.59 

80:20 

1 0.75 0.75 0.75 0.75 0.75 0.38 0.38 0.38 0.38 0.38 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

2 0.86 0.86 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.85 0.75 0.75 0.75 0.75 0.75 0.96 0.96 0.96 0.96 0.96 

3 0.04 0.06 0.06 0.06 0.06 0.04 0.11 0.10 0.10 0.10 0.05 0.06 0.06 0.06 0.06 0.29 0.27 0.26 0.22 0.18 

…                    … 

8 0.01 0.04 0.06 0.08 0.08 0.04 0.10 0.11 0.13 0.13 0.00 0.02 0.03 0.04 0.04 0.31 0.37 0.46 0.46 0.46 

9 0.06 0.04 0.01 0.01 0.01 0.17 0.17 0.06 0.06 0.06 0.01 0.01 0.00 0.00 0.00 0.34 0.41 0.60 0.68 0.66 

10 0.04 0.05 0.05 0.04 0.04 0.15 0.17 0.15 0.10 0.10 0.01 0.01 0.01 0.01 0.01 0.70 0.68 0.62 0.65 0.62 

70:30 

1 0.72 0.72 0.72 0.72 0.72 0.36 0.36 0.36 0.36 0.36 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

2 0.15 0.14 0.14 0.14 0.14 0.16 0.15 0.15 0.15 0.15 0.23 0.21 0.21 0.21 0.21 0.11 0.20 0.20 0.20 0.20 

3 0.08 0.06 0.07 0.08 0.08 0.11 0.10 0.10 0.11 0.11 0.07 0.05 0.06 0.06 0.06 0.29 0.26 0.24 0.24 0.24 

…                    … 

8 0.13 0.12 0.10 0.11 0.12 0.18 0.16 0.15 0.17 0.18 0.03 0.04 0.04 0.04 0.04 0.44 0.45 0.50 0.50 0.50 

9 0.10 0.08 0.05 0.07 0.08 0.22 0.22 0.22 0.19 0.22 0.03 0.02 0.02 0.02 0.02 0.87 0.72 0.59 0.59 0.59 

10 0.10 0.17 0.17 0.10 0.11 0.09 0.09 0.09 0.10 0.10 0.02 0.02 0.03 0.02 0.02 0.14 0.29 0.36 0.36 0.36 

60:40 

1 0.73 0.73 0.73 0.73 0.73 0.36 0.36 0.36 0.36 0.36 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

2 0.86 0.86 0.86 0.86 0.86 0.84 0.83 0.85 0.84 0.84 0.78 0.79 0.79 0.78 0.78 0.93 0.94 0.93 0.93 0.93 

3 0.08 0.09 0.10 0.10 0.11 0.10 0.15 0.21 0.21 0.21 0.09 0.09 0.10 0.10 0.11 0.34 0.40 0.40 0.42 0.43 

…                    … 

8 0.12 0.10 0.10 0.09 0.14 0.21 0.21 0.19 0.17 0.20 0.03 0.03 0.03 0.02 0.03 0.56 0.56 0.51 0.52 0.51 

9 0.04 0.05 0.05 0.05 0.03 0.12 0.13 0.16 0.17 0.17 0.01 0.01 0.01 0.01 0.01 0.22 0.19 0.24 0.17 0.16 

10 0.25 0.27 0.27 0.36 0.37 0.12 0.12 0.13 0.15 0.15 0.04 0.04 0.04 0.05 0.05 0.18 0.19 0.29 0.29 0.29 

50:50 

1 0.74 0.74 0.74 0.74 0.74 0.37 0.37 0.37 0.37 0.37 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

2 0.14 0.14 0.14 0.14 0.14 0.16 0.17 0.16 0.16 0.16 0.22 0.21 0.21 0.21 0.21 0.14 0.16 0.19 0.18 0.18 

3 0.46 0.42 0.29 0.27 0.28 0.33 0.30 0.27 0.27 0.28 0.24 0.21 0.14 0.13 0.14 0.22 0.20 0.18 0.17 0.17 

…                    … 

8 0.06 0.06 0.07 0.08 0.08 0.10 0.07 0.09 0.12 0.12 0.01 0.01 0.01 0.02 0.02 0.57 0.50 0.51 0.55 0.57 

9 0.05 0.04 0.07 0.06 0.07 0.17 0.11 0.20 0.22 0.19 0.02 0.02 0.02 0.02 0.03 0.67 0.74 0.75 0.65 0.65 

10 0.07 0.09 0.11 0.13 0.13 0.09 0.09 0.10 0.10 0.10 0.01 0.02 0.02 0.02 0.02 0.29 0.37 0.40 0.41 0.42 

 

TABLE 9 
HMM + SMOTE Performance with 5 iterations 

Hidden 

State 

Accuracy Precision Recall AUC 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

90:10 

1 0,72 0,72 0,72 0,72 0,72 0,36 0,36 0,36 0,36 0,36 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 

2 0,82 0,82 0,82 0,85 0,85 0,83 0,83 0,83 0,85 0,85 0,71 0,71 0,71 0,75 0,75 0,95 0,96 0,96 0,96 0,96 

3 0,49 0,46 0,44 0,44 0,44 0,57 0,57 0,54 0,54 0,54 0,32 0,31 0,28 0,28 0,28 0,96 0,96 0,96 0,90 0,90 

…                    … 

8 0,05 0,05 0,03 0,03 0,05 0,07 0,06 0,04 0,04 0,06 0,01 0,01 0,00 0,00 0,01 0,45 0,48 0,39 0,37 0,36 

9 0,08 0,08 0,08 0,08 0,08 0,22 0,17 0,15 0,15 0,15 0,02 0,03 0,02 0,02 0,02 0,80 0,68 0,68 0,68 0,67 

10 0,03 0,03 0,03 0,05 0,05 0,04 0,05 0,06 0,07 0,07 0,00 0,00 0,00 0,01 0,01 0,11 0,14 0,21 0,21 0,21 
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IV. DISCUSSION 

Based on the research results previously explained, the best 

results are identified from the four models performed, which 

are ELM, ELM with SMOTE, HMM, and HMM with 

SMOTE. A comparison of the highest performance of all 

modeling can be seen in FIGURE 5. 

FIGURE 5. Comparison of Each Model 

 

The best results in the ELM model are found in the 90:10 

ratio with 45 hidden neurons, while the best results in ELM 

modeling with SMOTE are found in the 90:10 ratio with 35 

hidden neurons. The best results in HMM modeling are in the 

60:40 ratio with 2 hidden states and 3 iterations, while the best 

results in HMM modeling with SMOTE are in the 70:30 ratio 

with 2 hidden states and 2 iterations. 

Based on the research results, the application of SMOTE to 

ELM and HMM improves performance results in most 

experiments. It can be seen that the ELM test with SMOTE at 

a ratio of 90:10 with 35 hidden neurons resulted in an accuracy 

value of 1.00, precision of 1.00, recall of 1.00, and AUC of 

1.00. In comparison, the ELM test without SMOTE at the 

same ratio and number of hidden neurons resulted in an 

accuracy value of 0.9744, precision of 0.9828, recall of 

0.9545, and AUC of 1.00.  

It can also be seen in testing HMM with SMOTE at a ratio 

of 90:10 with 2 hidden states and 4 iterations, resulting in an 

accuracy value of 0.8461, precision of 0.8504, recall of 

0.7548, and AUC of 0.9594. The HMM test without SMOTE 

at the same ratio, number of hidden states, and iterations 

resulted in an accuracy value of 0.1794, precision 0.2189, 

recall 0.2353, and AUC 0.1753. 

Based on the ROC-AUC curve in FIGURE 6 of the highest 

values of each modeling, all models performed very well: All 

ROC curves are very close to the upper left corner of the 

graph, which indicates high TPR and low FPR. This indicates 

that these four models can classify instances with high 

accuracy. ELM and ELM with SMOTE performed the best: 

Both models have an AUC of 1.00, indicating that they 

distinguish between positive and negative classes. 
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TABLE 9 
(Continued) 

Hidden 

State 

Accuracy Precision Recall AUC 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

80:20 

1 0,75 0,75 0,75 0,75 0,75 0,38 0,38 0,38 0,38 0,38 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 

2 0,83 0,83 0,83 0,83 0,83 0,85 0,85 0,85 0,85 0,85 0,68 0,68 0,68 0,68 0,68 0,89 0,89 0,89 0,89 0,89 

3 0,8 0,8 0,8 0,8 0,8 0,5 0,5 0,5 0,5 0,5 0,4 0,4 0,4 0,4 0,4 0,5 0,6 0,6 0,6 0,6 

…                    … 

8 0,4 0,4 0,4 0,4 0,4 0,1 0,2 0,2 0,2 0,2 0,1 0,1 0,1 0,1 0,1 0,7 0,6 0,6 0,6 0,6 

9 0,2 0,4 0,3 0,4 0,4 0,3 0,2 0,3 0,3 0,3 0 0,1 0,1 0,1 0,1 0,8 0,7 0,6 0,6 0,6 

10 0,5 0,4 0,2 0,1 0,1 0,2 0,2 0,2 0,2 0,2 0,1 0,1 0 0 0 0,8 0,6 0,6 0,6 0,6 

70:30 

1 0,72 0,72 0,72 0,72 0,72 0,36 0,36 0,36 0,36 0,36 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 

2 0,87 0,87 0,86 0,85 0,85 0,88 0,88 0,86 0,84 0,84 0,78 0,78 0,78 0,77 0,77 0,89 0,92 0,91 0,90 0,90 

3 0,63 0,57 0,55 0,55 0,55 0,58 0,55 0,54 0,53 0,53 0,41 0,35 0,32 0,32 0,32 0,94 0,95 0,87 0,87 0,87 

…                    … 

8 0,1 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,2 0 0 0 0 0 0,7 0,7 0,7 0,8 0,8 

9 0 0 0 0 0 0,1 0,1 0,1 0,1 0,1 0 0 0 0 0 0,6 0,6 0,6 0,6 0,6 

10 0,1 0,1 0 0 0 0,1 0,1 0,1 0,1 0,1 0 0 0 0 0 0,2 0,3 0,3 0,3 0,3 

60:40 

1 0,73 0,73 0,73 0,73 0,73 0,36 0,36 0,36 0,36 0,36 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 

2 0,1 0,2 0,2 0,2 0,2 0,1 0,1 0,1 0,1 0,1 0,3 0,3 0,3 0,3 0,3 0,2 0,2 0,2 0,2 0,2 

3 0,6 0,6 0,6 0,6 0,6 0,6 0,5 0,5 0,6 0,5 0,4 0,4 0,4 0,4 0,3 0,9 0,9 0,9 0,9 0,9 

…                    … 

8 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0 0 0 0 0 0,4 0,5 0,5 0,5 0,5 

9 0 0 0 0 0 0,1 0,1 0,1 0,1 0,1 0 0 0 0 0 0,4 0,5 0,5 0,6 0,6 

10 0 0 0 0 0 0,1 0 0,1 0,1 0 0 0 0 0 0 0,4 0,4 0,4 0,4 0,4 

50:50 

1 0,74 0,74 0,74 0,74 0,74 0,37 0,37 0,37 0,37 0,37 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 

2 0,1 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 

3 0,6 0,7 0,7 0,7 0,7 0,9 0,9 0,9 0,9 0,9 0,6 0,6 0,6 0,6 0,6 0,4 0,4 0,4 0,4 0,4 

…                    … 

8 0,1 0,1 0,1 0,1 0 0,2 0,1 0,1 0,2 0,1 0 0 0 0 0 0,6 0,7 0,7 0,7 0,7 

9 0,1 0,1 0 0,1 0 0,1 0,2 0,2 0,2 0,2 0 0 0 0 0 0,6 0,6 0,7 0,7 0,7 

10 0,4 0,4 0,3 0,3 0,3 0,2 0,2 0,2 0,2 0,2 0,1 0,1 0 0,1 0,1 0,6 0,6 0,6 0,6 0,6 
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FIGURE 6. ROC-AUC Curve of highest values of each model 

 

Research with the dataset 'Recurrence of Differentiated 

Thyroid Cancer' was conducted by [9] by comparing several 

machine learning methods such as Logistic Regression, Naïve 

Bayes, Decision Tree, and KNN. A comparison of model 

performance from the previous study with this study can be 

seen in TABLE 10. 
TABLE 10 

Comparison with Previous Research on Recurrence of Differentiated 
Thyroid Cancer 

Research Classifier Accuracy 

[9] 

LR 0.91 

NB 0.86 
DT 0.91 

KNN 0.90 

Proposed 

Work 

ELM 1.00 

ELM-SMOTE 1.00 

HMM 0.86 

HMM-SMOTE 0.87 

A comparison of the performance results of previous 

research with this study with the same machine learning 

method can be seen in TABLE 11. 

TABLE 11 
Comparison of Model with Previous Research 

Research Classifier Dataset Accuracy 

[52] 
ELM 

Lung Cancer 
0.89 

ELM-SMOTE 0.85 

[53] ELM Hydraulic Pump 1.00 

[40] HMM 
Parkinson's 

Disease 
0.96 

Proposed 

Work 

ELM 
Recurrence of 

Differentiated 
Thyroid Cancer 

1.00 

ELM-SMOTE 1.00 

HMM 0.86 

HMM-SMOTE 0.87 

Based on the results and explanations above, it can be 

concluded that the Extreme Learning Machine algorithm, 

especially ELM with SMOTE, is a better algorithm than the 

Hidden Markov Model in predicting recurrence of 

differentiated thyroid cancer. In addition, the application of 

SMOTE has been proven to improve the performance of ELM 

and HMM modeling in predicting the recurrence of 

differentiated thyroid cancer. 

Meanwhile, the weakness of the research results of this 

study lies in HMM modeling, where the more hidden states 

are tested, the lower the accuracy value. This is because HMM 

is an algorithm that has high complexity so that when the 

number of hidden states is less, the model tends to be simpler, 

while models with many hidden states make the modeling 

more complex. To address this, future research is strongly 

recommended to focus on dimension reduction techniques and 

extracting relevant features to reduce the model's complexity. 

The implications of this research are extensive in medical 

prediction and machine learning. Using ELM with SMOTE 

significantly improved the accuracy in predicting the 

recurrence of differentiated thyroid cancer compared to other 

models. This means that this model can be more reliable in 

identifying patients at high risk of recurrence. SMOTE 

increases the number of minority samples (i.e., patients who 

experience recurrence), which helps the ELM model be more 

sensitive in detecting positive cases. This study demonstrates 

the effectiveness of SMOTE in addressing the problem of 

class imbalance in medical data, which is often a challenge in 

developing prediction models. Using ELM can speed up the 

diagnosis and medical decision-making process in clinical 

practice. The ELM model with SMOTE can be a valuable tool 

for researchers and medical practitioners to improve treatment 

outcomes for differentiated thyroid cancer patients. HMMs, 

although more complex, may be more suitable for applications 

that require detailed modeling of temporal dynamics, such as 

monitoring disease progression over time. Overall, this study's 

results provide practical guidance for researchers and 

practitioners in selecting and implementing machine learning 

models for differentiated thyroid cancer recurrence prediction 

and underscore the importance of customizing and validating 

models according to the data characteristics used. 

V. CONCLUSION 

This research uses machine learning methods to detect the 

recurrence of differentiated thyroid cancer. This research 

begins with collecting datasets from Kaggle, preprocessing 

data with encoding methods, dividing data into several ratio 

proportions, balancing data with SMOTE, modeling ELM and 

HMM data, and analyzing performance results with accuracy, 

precision, recall, and AUC. This research conducted four 

machine learning models: ELM, ELM with SMOTE, HMM, 

and HMM with SMOTE. 

ELM modeling gets the best results at a ratio of 90:10 with 

45 hidden neurons that get an accuracy value of 1.00, precision 

1.00, recall 1.00, and AUC 1.00. ELM modeling with SMOTE 

gets the best results at a ratio of 90:10 with 35 hidden neurons 

that get an accuracy value of 1.00, precision 1.00, recall 1.00, 

and AUC 1.00. HMM modeling gets the best value at a ratio 

of 60:40 with 2 hidden states and 3 iterations, which get an 

accuracy value of 0.8636, precision 0.8471, recall 0.7946, and 

AUC 0.9343. Last, HMM modeling with SMOTE gets the 

best results at a ratio of 70:30 with 2 hidden states and 2 

iterations, which get an accuracy value of 0.8696, precision 

0.8832, recall 0.7848, and AUC 0.9174. 

Based on the highest result of each modeling, ELM with 

SMOTE was shown to have better performance than others 

model, then ELM without SMOTE, and then HMM with 

SMOTE, last HMM without SMOTE. ELM work better than 
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HMM in the prediction recurrence of differentiated thyroid 

cancer. ELM's ability to generalise is better than HMM, and 

the application of SMOTE to ELM and HMM is proven to 

improves performance results in most experiments. 

This research still has weaknesses, which is the low 

accuracy value on more of the hidden states in HMM testing. 

This is because HMM is an algorithm with high complexity. 

Thus, future research is recommended to use dimension 

reduction or feature extraction techniques such as Principal 

Component Analysis (PSA) or similar methods to reduce 

model complexity. 
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