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ABSTRACT  Baby crying is one of the main ways babies communicate with their parents to convey their needs and emotions. 

While the act of baby crying can yield crucial insights into a baby's needs and emotions, there is a dearth of research explicitly 

investigating the influence of the audio range within a baby cry on research outcomes. The core research problem is the lack 

of research on the influence of audio range on baby cry classification on machine learning. This research aims to compare the 

effect of the audio length of a baby's cry in MFCC feature extraction and several machine learning algorithms on the 

performance of baby emotion detection. The contribution enriches an understanding of classification and feature selection 

applications in audio datasets, particularly in baby cry audio. The utilized dataset, donate-a-cry-corpus, encompasses five 

distinct data classes and possesses seven seconds. The employed methodology consists of the spectrogram technique, cross-

validation for data partitioning, MFCC feature extraction with 10, 20, and 30 coefficients, and machine learning models 

including Support Vector Machine, Random Forest, and Naïve Bayes. The findings of this study reveal that the Random Forest 

model achieved an accuracy of 0.844 and an F1 score of 0.773 when 10 MFCC coefficients were utilized and the optimal audio 

range was set at six seconds. Furthermore, the Support Vector Machine model with an RBF kernel yielded an accuracy of 0.836 

and an F1 score of 0.761. In contrast, the Naïve Bayes model achieved an accuracy of 0.538 and an F1 score of 0.539. Notably, 

no discernible differences were observed when evaluating the Support Vector Machine and Naïve Bayes methods across the 

1-7 second trial. The implication of this research is to establish a foundation for advancing premature illness identification 

techniques grounded in the vocalizations of baby, thereby facilitating swifter diagnostic processes for pediatric practitioners.  

INDEX TERMS Baby cry detection, Spectrogram, MFCC, machine learning.

I. INTRODUCTION 

The vocalization of distress through crying is the primary 

mode of communication employed by baby, as it allows them 

to express their needs and emotions effectively. About 130 

million babies are born globally each year [1]. Understanding 

a baby's cry is crucial in providing adequate care, enabling 

parents to accurately respond to the baby's needs. However, 

understanding the meaning of crying is difficult for many 

people, especially new parents. Although a baby cry can 

provide important clues about the baby's needs and emotions, 

few studies have specifically examined the influence of the 

audio range and best method in a baby cry on research results. 

The problem needs to be investigated because it can affect a 

baby's health. Machine Learning (ML) algorithms are being 

explored and applied for numerous tasks in clinical workflows 

ranging from disease prognosis, diagnosis, medical treatment, 

defining a care plan for the patient, and many more [2].  

Machine learning, a brand of computational science, is 

extensively used in this part, with the classification task as the 

major approach [3]. 

In the initial stages of baby cry research [4],  the K-means 

clustering method and Gaussian mixture models were 

employed, yielding an accuracy rate of 81.27% when utilizing 

the donate-a-cry corpus dataset. Subsequently, further 
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research on baby cry analysis was conducted by [5], who 

employed the CNN algorithm with a smaller training dataset 

and achieved an accuracy rate of 72% using online sound 

libraries of baby cries without segmenting the audio into 

seconds. 

In this study, the baby cry audio files undergo a 

preprocessing stage to identify significant features. The Mel 

Frequency Cepstrum Coefficient (MFCC) is a feature 

extraction method utilized in audio research. MFCC enables 

the processing of audio variations by converting sound signals 

into MFCC coefficients represented as a vector sequence, 

which can then be employed for research purposes. In [6], 

MFCC yielded a 96% accuracy rate. Cross-validation is a data 

resampling method that aims to assess the generalization 

ability of predictive models and prevent overfitting [7]. 

Specifically, the study employed K-Fold cross-validation to 

classify baby cries, utilizing a 5-fold cross-validation 

approach. [8]  

In the context of baby cry datasets, the accuracy of 

machine learning methods is influenced. One such case 

involves the usage of SVM, which yielded an F1 score of 

10.3% [9]. Another case involves the application of SVM on 

the baby Chillanto database with 5-fold cross-validation, 

resulting in an accuracy rate of 90% [8]. The study by [10] 

utilized SVM with an RBF kernel, achieving an accuracy rate 

of 0.560. In addition to SVM, the study also employed the 

Naïve Bayes method, which demonstrated good accuracy in 

classifying gender datasets with a rate of 87% [6]. 

Furthermore, SVM was utilized in predicting health issues, 

with the study combining SVM with XG Boost and achieving 

an accuracy rate of 85.71% [11]. SVM had high accuracy in 

the study [12], which resulted in 96% accuracy. 

Random Forest has been utilized in previous research 

[12]–[14] and has demonstrated the highest accuracy ranging 

from 62%  to 80%. Following a comprehensive comparison of 

various machine learning methods employed in previous 

studies, it is deemed advantageous to adopt these three 

methods and utilize MFCC feature extraction in the present 

study due to their ability to yield favourable accuracy 

outcomes. 

Distinct from preceding research endeavours, this study 

diverges because it explores a wider range of duration 

variations in the classification of baby cry audio. The novelty 

of this research lies in utilizing different coefficient MFCC 

values (10, 20, 30) on different audio lengths of a baby's cry 

(1 – 7 seconds) by using three classification algorithms,  

namely Support Vector Machine, Random Forest, and Naïve 

Bayes. 

This research aims to determine the prediction 

performance of several classification models that have been 

built. The models are built based on different combinations of 

MFCC coefficient values, lengths of a baby's cry, and 

classification algorithms. The performance obtained from 

each model will provide knowledge of which combination 

configuration can detect emotions based on a baby's cry. So 

this model can then be applied to create an application for 

detecting baby emotions. 

The results of this research are expected to provide 

contributions such as: 

a. It provides a better understanding of classification 

performance based on the audio length and the number of 

feature extraction coefficients on audio datasets, 

specifically for audio recordings of baby crying. 

b. It offers insight into the most effective algorithm for 

classifying audio signals produced by baby crying. 

c. It has the potential to be implemented as an intelligent 

application aimed at assisting parents in identifying the 

emotions and needs of their babies through the analysis of 

different cry types. 

d. The results of this study further enrich the existing body 

of knowledge on audio classification, with a specific 

focus on the domain of baby crying audio. 

 
II. MATERIAL AND METHODS 

The research flow of this research can be seen in FIGURE 1 

which consist of data collection, pre-processing, K-fold cross 

validation, and classification. 

 

 

FIGURE 1 Research Flow of SVM, Random Forest, and Naïve Bayes 
Classification Models 
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A. DATASET 

Donate-a-cry-corpus is the audio dataset of baby crying 

recordings that have been used in previous research [12], [15]–

[17]. This dataset has five class labels: 

• Class label 0 is belly pain. This label consists of 16 

audios. 

• Class label 1 is burping and consists of 8 audios. 

• Class label 2 is discomfort and consists of 27 audios. 

• Class label 3 is hungry and consists of 383 audios. 

• Class label 4 is tired and consists of 24 audios. 

The total recording in this dataset is 458 recorded audios 

that are 7 seconds long and formatted as WAV. The sound 

wave graph for the burping label can be seen in FIGURE 2. 

TABLE 1 shows details of the dataset that consists of two 

columns. The first column is the audio file name, and the 

second is the class label. 

 

 

  

 

(a) (b)  

 
 

 

(c) (d)  

 

 

(e)  
FIGURE 2. The sound wave for baby a) crying burping, b) cry bell-pain, c)cry discomfort, d)cry hungry, and e) cry tired. 
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TABLE 1 
Detail Dataset 

No File Emotion 

1 hu_e4051e62-d21d-4bb8-a235-

fd7e859ad787-1430740613780-1.7-f-

72-hu.wav 

hu 

2 hu_045C5483-69E1-4BEC-B1D8-

9286D174B9B2-1430102996-1.0-m-04-

hu.wav 

hu 

…. …. …. 

457 hu_6d922623-8424-4625-be4c-

4964e0c9e25c-1434898452774-1.7-m-

04-hu.wav 

hu 

458 hu_B327333E-2DE2-4833-A75A-

4C576208BED3-1430087456-1.0-f-48-

hu.wav 

hu 

B. PREPROCESSING 

Preprocessing is improving and facilitating the quality of raw 

data so that it can later be used in further steps [18]. Data 

reduction involves removing unimportant data and selecting 

essential data [19]. In this phase, the work process is divided 

into two parts, specifically transforming raw audio data into 

two-dimensional data known as a spectrogram. This section is 

to convert audio to dataset. The preprocessing that will be 

conducted in this study entails converting audio data into 

visual data in the form of spectrograms. Spectrograms are 

commonly employed in the domains of acoustic science, audio 

engineering, and related disciplines. Consequently, the 

transformed data can be observed in FIGURE 3. 

 

 
FIGURE 3.  Spectrogram 

The initial audio data encompasses 7 seconds, and within 

this temporal span, experiments will be conducted at intervals 

of 1 second, 2 seconds, 3 seconds, 4 seconds, 5 seconds, 6 

seconds, and 7 seconds. These experiments aim to ascertain 

whether any disparities in the research findings arise. 

Subsequently, the data will undergo spectrogram processing, 

followed by the extraction of features. Specifically, six 

features will be utilized for extraction, namely Chroma Short 

Time Fourier Transform, Root Mean Square, Spectral 

Bandwidth, Spectral Rolloff, Zero Crossing Rate, and Mel 

Frequency Cepstral Coefficient. This feature extraction is used 

because research [10] obtained good results with this feature.  

The feature extraction process on the 7-second audio can 

be observed in the following TABLE 2. In this table, all 

feature that are used in preprocessing are shown. The 

remaining information is encapsulated within the table, 

referring to the first to tenth Mel Frequency Cepstral 

Coefficients (MFCC 1-10). Feature extraction with 6-second 

audio can be seen in TABLE 3. In this table, there is all feature 

that is used in preprocessing. The remaining information is 

encapsulated within the table, referring to MFCC 1-10. There 

is a different result in Table 2 because seconds affect feature 

extraction.  Feature extraction with 5-second audio can be seen 

in TABLE 4. There is a different result in TABLE 3 because 

seconds affect feature extraction. Feature extraction was also 

conducted for 1-4 seconds, yielding favorable outcomes. 

Consequently, this process can be further pursued to extract 

MFCC. 

 
TABLE 2 

Feature Extraction Results For 7 Seconds 

No Croma_stft RMSE Spectral_centroid … Mfcc10 

1 0.313 0.106 1224.184 … -7.494 

2 0.273 0.165 1038.469 … -4.836 

… … … … … … 

457 0.278 0.0516 729.203 … -5.456 

458 0.442 0.035 1466.236 … 2.444 

 
TABLE 3 

Feature Extraction Results For 6 Seconds 

No Croma_stft RMSE Spectral_centroid … Mfcc10 

1 0.329 0.094 1234.265 … -7.887 

 

2 0.296 0.173 1072.189 … -4.289 

 

… … … … … … 

 

457 0.277 0.053 757.355 … -4.985 

 

458 0.464 0.034 1496.897 … 2.053 

 
TABLE 4 

Feature Extraction Results For 6 Seconds 

No Croma_stft RMSE Spectral_centroid … Mfcc10 

1 0.329 0.091 1264.557 … -9.353 

2 0.273 0.204 1064.721 … -3.532 

… … … … … … 

457 0.282 0.052 748.069 … -6.446 

458 0.471 0.026 1461.789 … 0.825 
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C.  MFCC FEATURE EXTRACTION  

Mel Frequency Cepstral Coefficients (MFCC) is also often 

used in speech recognition [1], [9], [20]. The utilization of 

MFCC for feature extraction stems from its ability to mimic 

the functionality of the human auditory system, which 

involves logarithmically filtering sound signals. MFCC refers 

to the capability of algorithms to generate minimal data while 

retaining crucial information inherent in an audio signal. Mel 

spectrogram converts audio signals into a spectrogram with a 

mel scale [20]. Feature extraction is obtaining characteristics 

to characterize an image [21].  

 

𝑀𝐹𝐶𝐶(𝑛, 𝑚) =  
1

𝑁
∑ 𝑙𝑜𝑔

𝑁−1

𝑘=0
(∑ 𝑋(𝑘, 𝑛) 𝑒− 𝑗2𝜋𝑘𝑚/𝑁

𝑁−1

𝑘=0
 𝐻𝑚(𝑘)                 (1) 

 

In equation (1) [22], n represents audio frame, m is a cepstral 

coefficient, N dedicates to the number of frames used in the 

fast Fourier transform, X (k,n) is the FFT value of frame n at 

frequency k, and Hm (k) is filterbank Mel -m at frequency k.  

Features of MFCC coefficients 10, 20, and 30 will be 

extracted from the acquired dataset. Subsequently, the number 

of features will be augmented by an additional six extraction 

features. In the case of using a coefficient of 10, the number of 

features will amount to 16. Similarly, if a coefficient of 20 is 

employed, the number of features will increase to 26. Lastly, 

if a coefficient of 30 is utilized, the number of features will 

reach 36. These outcomes concern the original audio duration 

of the dataset.  

TABLE 5 shows the results for 10 MFCC. The table 

displays the process of extracting features from a 7-second 

audio clip. This process involves extracting 6 features and the 

Mel-frequency cepstral coefficients (MFCC) 1-10. As a result, 

the initial set of features is expanded to a total of 16 features. 

Another result for 20 MFCC is presented in TABLE 6. The 

table displays the process of extracting features from a 7-

second audio clip. This process involves extracting 6 features 

and the Mel-frequency cepstral coefficients (MFCC) 1-20. As 

a result, the initial set of features is expanded to a total of 26 

features. Also, 30 MFCC are presented in TABLE 7. The table 

displays the process of extracting features from a 7-second 

audio clip. This process involves extracting 6 features and the 

Mel-frequency cepstral coefficients (MFCC) 1-30. As a result, 

the initial set of features is expanded to 36 features. 

 
TABLE 5 

Result for 10 MFCC Feature Extraction 

No Croma_stft RMSE Spectral_centroid … MFCC10 

1 0.313 0.106 1224.184 … -7.494 

2 0.273 0.165 1038.469 … -4.837 

… … … … … … 

457 0.279 0.051 729.203 … -5.456 

458 0.442 0.034 1466.236 … 2.444 

 

 

 

 

TABLE 6 
Result For 20 MFCC Feature Extraction 

No Croma_stft RMSE Spectral_centroid … MFCC20 

1 0.313 0.106 1224.184 … -4.337 

2 0.273 0.165 1038.469 … -4.219 

… … … … … … 

457 0.279 0.052 729.203 … -6.421 

458 0.442 0.035 1466.236 … -9.497 

 
TABLE 7 

Result for 30 MFCC Feature Extraction 

No Croma_stft RMSE Spectral_centroid … MFCC30 

1 0.313 0.106 1224.184 … -3.656 

2 0.273 0.165 1038.469 … -2.193 

… … … … … … 

457 0.279 0.052 729.203 … -3.568 

458 0.442 0.035 1466.236 … -0.398 

D. 10 K-FOLD CROSS-VALIDATION 

Cross-validation is a statistical method for evaluating the 

performance of an algorithm that has been designed. The 

cross-validation capability is that it can divide training and 

testing data [23]. Cross-validation is a computational method 

requiring information partitioning through subsets [24]. Cross-

validation is also resampling data to prevent overfitting [7]. 

One part is used to validate the model, and the rest to train the 

classifier [25] 

This stage divides the dataset into training and test data 

using cross-validation with a value of k = 10. The data will be 

divided into ten subsets with the same class number [10].  

E. SUPPORT VECTOR MACHINE CLASSIFICATION  

Support Vector Machine is an algorithm for predicting and 

classifying linear functions in high-dimensional space. 

Support vector machines are also used for feature training and 

testing [6]. SVM is also used for regression. SVM is one of the 

machine learning methods that is easy to implement [21]. 

SVM is a binary classification model [26], [6].  

The main focus of this algorithm is to build an optimal 

hyperplane (separator) to separate two different classes of 

data. An SVM display depicts instances as points in space, 

strategically arranged to ensure that the models of distinct 

categories are segregated by a meaningful, maximally wide 

gap [27]. The mathematical underpinnings of Support Vector 

Machines (SVMs) are deeply rooted in the construction of a 

hyperplane, which is defined by equation (2) [27]. 

𝜔 ∙ 𝑥 + 𝑏 = 0       (2) 

            𝑦𝑖 ∙ (𝑥𝑖 + 𝑏) ≥ 1                                   (3) 

where the weight vector 𝜔 is orthogonal to the hyperplane, 

while 𝑏 represents the bias term that determines the 

hyperplane's offset from the origin. From a mathematical 

standpoint, SVMs address an optimization problem by 

minimizing ½ |(|𝜔|)|^2. Subject to the constraints outlined in 
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equation (3) for all data points, with 𝑦𝑖 denoting the class 

labels, and Xi is the represent list of x.  

This particular formulation guarantees not only accurate 

classification but also a significantly wide margin, thereby 

rendering SVMs a reliable and versatile choice for various 

machine-learning endeavors. SVM can be used in formula (4) 

in linear cases. 

 𝐾 (𝑥𝑖,𝑥𝑗) = 𝑥. 𝑦               (4) 

 

where K is the kernel used on SVM, x and y are points in the 

data that form a vector representing values in the 

classification. Using kernels SVM for data classification needs 

that cannot be solved linearly. One of these kernels is RBF. 

The following formula is the RBF kernel SVM equation [22]. 

𝐾 (𝑥𝑖,𝑥𝑗) = exp (−
||𝑋𝑖− 𝑋𝑗||2

2𝜎2 )         (5) 

where K is dedicated to the kernel used on SVM. x and y are 

points in the data form a vector representing values in the 

classification, and 𝜎 is the parameters used in the RBF kernel. 

SVM is divided into two kernels, namely RBF and linear. This 

linear kernel is a well-known and popular SVM kernel. The 

RBF kernel is a kernel concept that aims to classify data that 

cannot be separated linearly.  This research was also used in 

[12].  

F. RANDOM FOREST CLASSIFICATION 

The Random Forest (RF) algorithm is an ensemble method 

in machine learning. It builds multiple decision trees and 

combines their outputs for more accurate predictions [28], 

[25], [12], [29]. Each tree is constructed using a random 

subset of the data, and the final prediction is determined by 

a vote from all the trees [14], [24]. This approach enhances 

accuracy, reduces overfitting, and works well for both 

classification and regression tasks. 

The Random Forest algorithm's formula is used in equation 

(6) [22]. 

 

𝐺𝑖𝑛𝑖 (𝑆) = 1 −  ∑ 𝑝𝑖2 𝑘 𝑖 = 1        (6) 

 

where pi is the probability of S belonging to class i, and k is 

the dataset's number of classes or categories. Pi represents the 

proportion of the dataset belonging to class or category i. This 

algorithm proceeds with the following steps [12]: 

1. Select random samples from the database. 

2. Construct a decision tree for each sample. Obtain the 

prediction from each decision tree.  

3. Count the frequency of results for each class 

4. Select the most frequent result as the final prediction 

G. NAÏVE BAYES CLASSIFICATION 

The Naive Bayes algorithm is a probabilistic classification 

technique based on Bayes' theorem. It assumes that the 

features used for classification are independent, which might 

be an oversimplification in real-world scenarios [6], [30]. 

The algorithm calculates the probability of a data point 

belonging to a certain class given its feature values. During 

training, it learns the probabilities from the data. In 

prediction, it multiplies the probabilities of individual 

features for each class and selects the class with the highest 

probability as the final prediction. Despite its simplicity and 

the "naive" assumption of independence, Naive Bayes often 

performs well in text classification and spam filtering tasks 

[24]. The advantage of using NB is that it only requires 

training data that is not large to determine the estimated 

parameters needed in the classification process [6].  

 

(𝐶|𝐹1, … , 𝐹𝑛) =
𝑝 (𝐶)𝑝(𝐹1,…,𝐹𝑛|𝐶)

𝑝(𝐹1,…,𝐹𝑛)
         (7) 

 

where 𝑝(𝐶|𝐹1, … , 𝐹𝑛) is the posterior probability, p (C) is the 

probability of class C. 𝑝(𝐹1, … , 𝐹𝑛 |𝐶) is the probability 

likelihood, and 𝑝(𝐹1, … , 𝐹𝑛) prior probability of the instance 

(𝐹1, … , 𝐹𝑛). 

III. RESULTS 

This section presents the performance of models for 

detecting baby crying, utilizing Support Vector Machine, 

Random Forest, and Naïve Bayes algorithms. The duration 

of the audio samples of baby cries falls within the range of 1 

to 7 seconds, while the number of MFCC coefficients 

exhibits variability. 

A. PERFORMANCE OF RANDOM FOREST  

The SVM classification model is constructed using the 

identical parameters as the study [10], which are as follows: 

n_estimators = 100, random_state = 42, n_splits = 10, and 

shuffle = True. The performance of this classification model 

can be observed in FIGURE 4. Model performance, evaluated 

by accuracy measurements, can be found in section (a), while 

section (b) presents the F1 score measurements. The 

performance value, utilizing 10 MFCC coefficients, is 

visualized in the first bar, and the subsequent bar demonstrates 

the performance value when the number of the MFCC 

coefficients is 20 and 30. 

The model that uses feature extraction data with 10 MFCC 

coefficients produces the highest accuracy of 0.836 and F1 

score of 0.762. That highest performance value is obtained 

when using 6 seconds of audio. The best performance of the 

model built with data featuring 20 MFCC coefficients is that 

the accuracy value is 0.763, and the F1 score is 0.834. That 

result was obtained using audio with a length of 3 seconds. 

Moreover, a model using data created with 30 MFCC 

coefficients performed best when using 3 seconds of audio. 

That model's performance has an accuracy of 0.838 and an F1 

score of 0.765.  

B. PERFORMANCE OF SUPPORT VECTOR MACHINE 

The cry detection model for babies that was constructed in 

this study utilizes the SVM algorithm. The selection of the 

Radial Basis Function (RBF) kernel for this model was based 

on its effectiveness in audio classification and multiclass 

classification scenarios [10], [15]. The chosen parameters for 
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the SVM model include C=1.0, gamma = 'scale', probability 

= True, and decision_function_shape = 'ovr'. 

The performance of the SVM model can be observed in 

FIGURE 5, whereby part (a) illustrates the accuracy and part 

(b) displays the F1 score value. Upon comparing the 

performance in FIGURE 5, it becomes evident that the 

modifications made to the number of MFCC utilized in the 

SVM model yield nearly identical results. Specifically, the 

accuracy ranges between 0.834 and 0.836, while the F1 scores 

vary between 0.760 and 0.761. Remarkably, the model 

achieves optimal performance when utilizing only one second 

of audio data. 

 
C. PERFORMANCE OF NAÏVE BAYES 

The baby cry detection model built using the Naïve Bayes 

algorithm in this study uses parameters n_samples = 500, 

n_features = 10, n_informative = 5, n_classes = 5, 

random_state = 1. The model's detection performance is 

illustrated in FIGURE 6. 

FIGURE 6 provides a performance comparison, 

revealing no discrepancy in accuracy values and F1 scores 

 
(a) Accuracy 

 
(b) F1 score 

FIGURE 4 Random Forest performance using 10, 20, 30 MFCC 

 

 
(a) Accuracy 

 
(b) F1 score 

FIGURE 5 Support Vector Machine performance using 10,20 and 30 MFCC 

 

 
(a) Accuracy 

 

 
(b) F1 score 

FIGURE 6 Naïve Bayes performance using 10,20 and 30 MFCC 
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when considering different MFCC coefficient values and 

audio length. The model in question achieves an accuracy 

value of 0.539 and an F1 score of 0.538. 

IV. DISCUSSION 

From the research results above, the best performance value 

of the models built with three classification algorithms with 

variations in the MFCC coefficient value and audio length of 

the baby's cry is known. Such outcomes are presented in 

TABLE 8, which showcases the optimal performance of the 

models created by utilising SVM, Random Forest, and Naïve 

Bayes classification algorithms. 

A comparative analysis of the three models' best 

performance is illustrated in FIGURE 7. This comparison 

reveals that the Random Forest algorithm model outperforms 

the remaining two models. Furthermore, FIGURE 7 

demonstrates that the models constructed using SVM and 

Random Forest algorithms could be further developed for 

detecting emotions in baby crying audio. Conversely, the 

Naïve Bayes model does not demonstrate satisfactory 

performance in baby crying audio. 

 
TABLE 8 

Result in Different Machine Learning Method Classification 

Machine Learning 

Method 

F1 Accuracy 

SVM 0.761 0.836 

Random Forest 0.773 0.844 

Naïve Bayes 0.538 0.539 

 

 
FIGURE 7. Comparison performance of machine learning methods. 

The performance of the baby cry detection model built 

with Random Forest is influenced by the audio length and 

MFCC coefficient value. The influence of the two 

parameters is shown in FIGURE 4. The best performance of 

this model is obtained when using the smallest number of 

MFCC coefficients, namely ten and an audio length of six 

seconds. 

Variations in the MFCC coefficient value do not affect 

the baby cry detection model built using the SVM and Naïve 

Bayes algorithms. FIGURE 5 and FIGURE 6 show the same 

model performance even though the MFCC coefficient value 

is changed. In these two figures, it can also be seen that the 

best model performance has been obtained using an audio 

length of one second. 

TABLE 9 shows a comparison of the performance of the 

models built in this research with the performance of models 

from previous research. Previous studies used 7 seconds of 

audio of babies crying. 

Research on baby crying has been carried out and uses 

the donate-a-cry-corpus dataset [23]. This research obtained 

accuracy results of 81.27%. These results were obtained with 

the Convolutional Neural Network (CNN) model. Other 

research also uses datasets and MFCC-based feature 

extraction, and several classification algorithms [12]. The 

algorithms used in this research are Random Forest, K 

Nearest Neighbors (KNN), SVM and Linear Regression 

(LR). The audio length of the baby's cry used in this study 

was 7 seconds. The best performance of the research used a 

model built with Random Forest with an accuracy value of 

84%. 
TABLE 9 

Previous Research On Baby cry Dataset 

Research Classifier Accuracy (%) 

[23] CNN 81.2 

[12] Random Forest 84 

KNN 82 

SVM 71 

LR 42 

Our Research Random Forest 84.444 

SVM  83.590 

Naïve Bayes 53.900 

 
A comparison between the two preceding studies reveals 

that the method proposed in this study has the potential to 

outperform or achieve similar results as previous research. 

The method suggested in this research exhibits a distinct 

advantage: it yields superior outcomes when utilizing shorter 

audio durations. The investigation also introduces novel 

aspects, such as the examination of variations in MFCC 

coefficient values and audio length, which have not been 

extensively explored in the realm of audio classification. 

This is particularly true for research of the classification of 

baby's cries. 

Nevertheless, it is important to acknowledge the 

limitations and deficiencies within this research. 

Specifically, the resulting model's performance fails to reach 

optimal levels, as indicated by an accuracy rate below 85% 

and an F1 score below 0.8. The suboptimal performance of 

the baby cry detection can potentially be attributed to the 

issue of unbalanced data. Additionally, the audio 

segmentation process solely considers duration, disregarding 

the actual content. Consequently, the extracted audio 

snippets may either lack sound or contain non-cry sounds. If 

such audio data is utilized during the training phase, it is 

plausible that the resultant model will exhibit suboptimal 

performance. 

The cry detection model for babies developed in this 

study will have significant implications in the healthcare 
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industry due to its potential utilization by medical 

professionals and parents. Implementing this detection 

model as a mobile application would enable medical 

professionals to decipher the underlying issues causing the 

baby's needs based on their cries. Furthermore, parents 

would also benefit from this innovation as it would allow 

them to easily comprehend their babies' emotions and needs. 

Additionally, this research has profound implications in 

computer science as it contributes to the advancement of 

knowledge in audio classification research in general, 

specifically in the classification of infant cries. 

V. CONCLUSION 

The data obtained from baby crying audio is considered 

unstructured and requires a feature extraction procedure to 

generate structured data suitable for machine learning 

algorithms. In this study, Mel Frequency Cepstral 

Coefficients (MFCC) served as the basis for the feature 

extraction technique, with varying coefficient values 

employed to process baby crying audio spanning 1 to 7 

seconds. This investigation encompassed the development of 

three detection models utilizing three distinct machine 

learning algorithms: Support Vector Machine (SVM), 

Random Forest, and Naive Bayes, resulting in respective 

accuracy rates of 0.836, 0.844, and 0.539. Additionally, the 

F1 score values for the models above were calculated as 

0.761, 0.773, and 0.538, respectively. 

This research still has several limitations if seen from the 

model's performance, which produces an F1 score below 0.8. 

This suboptimal model performance can be caused by the 

model being built using unbalanced data. As a result, 

predictions for minority class data are wrong because the 

model tends to follow the pattern of majority class data. 

Another limitation is that audio cutting is only done based on 

the desired duration without paying attention to the content. 

This method has the potential to produce audio files whose 

contents are empty, making the pattern recognition training 

process less accurate. 

Given these limitations and shortcomings, it is 

recommended that further research be conducted to acquire 

new data that includes minority class data, thus achieving a 

balanced dataset. Additionally, future investigations should 

explore the implementation of data balancing techniques to 

enhance baby cry detection performance. 
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