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Abstract: Deception detection with electroencephalography (EEG) is still an open problem as a result of
inter-individual variability of brain activity and neural dynamics of deceitful responses. Traditional methods
fail to perform well in terms of consistent generalization, and as a result, research has ahifted towards
exploring sophisticated deep learning methods for Concealed Information Tests (CIT). The objective of the
present study is to categorize subjects as guilty or innocent based on EEG measurements and rigorously
test model performance in terms of accuracy, sensitivity, and specificity. To achieve this, experiments were
conducted on two EEG datasets: the LieWaves dataset, consisting of 27 subjects recorded with five
channels (AF3, T7, Pz, T8, AF4), and the CIT dataset, comprising 79 subjects recorded with 16 channels
(Fp1,Fp2, F3, F4,C3,C4,Cz, P3,P4, Pz, 01,02, T3/T7, T4/T8, T5/P7, T6/P8). Preprocessing involved a band-
pass filter for noise reduction, followed by feature extraction using the Discrete Wavelet Transform (DWT)
and the Fast Fourier Transform (FFT). Three models were evaluated: FBC-EEGNet, InceptionTime-light, and
their ensemble. Results indicate that InceptionTime-light achieved the highest accuracy of 79.2% on the
CIT dataset, surpassing FBC-EEGNet (70.8%). On the LieWaves dataset, FBC-EEGNet achieved superior
performance, with 71.6% accuracy, compared with InceptionTime-light (65.93%). In terms of specificity,
FBC-EEGNet reached 93.7% on the CIT dataset, while InceptionTime-light demonstrated balanced
performance with 62.5% sensitivity and 87.5% specificity. Notably, the ensemble model provided stable
and generalizable outcomes, yielding 70.8% accuracy, 62.5% sensitivity, and 75% specificity on the CIT
dataset, confirming its robustness across subject groups. In conclusion, FBC-EEGNet is effective for
maximizing specificity, InceptionTime-light achieves higher accuracy, and the ensemble model delivers a
balanced trade-off. The implications of this work are to advance reliable EEG-based deception detection
and to set the stage for future research on explainable and interpretable models, validated on larger and
more diverse datasets.

Keywords: EEG, Deception Detection, FBC-EEGNet, InceptionTime-light, Ensemble Model.

l. Introduction world applicability. Despite progress, current EEG-
Electroencephalography (EEG) has emerged as a  based deception-detection techniques still face several
powerful tool for studying brain activity due to its non- unresolved limitations. Most ERP-based methods rely

invasive nature and high temporal resolution. It has been heavily on P300 amplitude differences, which vary
widely applied in domains such as emotion recognition substantially across individuals and across sessions,
and deception detection. While emotion recognition resulting in poor generalization in subject-independent
leverages EEG signals to analyze affective states, settings. Several deep learning models have improved

deception detection primarily focuses on identifying ~ Performance, but often depend on complex
guilty or innocent responses in Concealed Information architectures or multimodal sensor combinations, which

Tests (CIT) and related paradigms. Traditional increase computational cost and hinder practical
approaches relied on event-related potentials (ERP)  applicability.  Moreover,  lightweight  frameworks
such as the P300, which provided valuable neural proposed in prior studies either underperform across
markers of recognition. However, these methods often diverse datasets or struggle to balance sensitivity and
struggled to generalize across individuals and required ~ SPecificity, both essential for forensic and security
controlled laboratory settings, thereby limiting their real- ~ applications. These limitations highlight the need for
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efficient, lightweight, and generalizable architectures
such as those investigated in this study.
In recent years, deep learning and multimodal fusion
methods have been increasingly employed to overcome
these limitations. Wang et al. [1] improved robustness in
emotion recognition by combining EEG functional
connectivity with eye tracking, while Zhang and Li [2]
introduced EEGFuseNet, an unsupervised hybrid model
capable of extracting richer spatial-temporal features.
Attention mechanisms further advanced the field, with
Chen and Zhao [3] utilizing spectral, spatial, temporal,
and channel information for improved classification.
Multimodal approaches, such as fusing EEG with GSR
and HRV [4] or EEG with fNIRS [6], demonstrated higher
accuracy but intfroduced complexity in terms of sensors
and deployment. For deception detection, studies such
as Geven et al. [5] (fCIT with FRN/P300) and Kim and
Park [8] (CNN-based automated lie detection) showed
the effectiveness of modern methods but highlighted
persistent challenges, such as inter-subject variability
and imbalanced performance metrics. Furthermore, the
release of new datasets such as LieWaves [11] and
meta-analyses on CIT [22] have enhanced
benchmarking, but large-scale, diverse, and multi-
session datasets remain limited. Advanced models like
graph neural networks [10], [21] and transformers [19],
[20] have shown promise in other EEG domains but
remain underexplored in deception detection.
Deceptive behavior engages multiple cortical
regions, including the prefrontal cortex, anterior
cingulate cortex, and parietal areas, which mediate
cognitive control, conflict monitoring, and recognition
processing. These neural processes manifest as distinct
EEG patterns such as frontal theta enhancement, alpha
suppression, and altered beta synchronization, during
guilty recognition. Since these changes occur at specific
spectral and temporal scales, spectral features extracted
using the FFT and time—frequency features extracted
using the DWT are critical for capturing deception-
related neural dynamics. FFT highlights stationary
oscillatory activity, whereas DWT isolates rapid transient
variations, making the combination of both approaches
highly effective for deception detection tasks. While
several recent studies have explored CNN-based
architectures, ERP-driven methods, or multimodal
fusion, many fail to directly address the strong inter-
subject variability or the challenges associated with
reduced-channel configurations commonly found in
practical scenarios. CNN-based approaches, such as
those by Kim and Park [8], provide spatial filtering but
show inconsistent generalization across datasets,
whereas ERP/fCIT approaches remain sensitive to
habituation. More advanced models, including GNNs
and transformers, deliver rich representational power but

demand high computational resources and longer
training times, thereby limiting their applicability to
lightweight forensic deployments. In contrast, the
present study focuses on compact models that achieve
rapid convergence, reduced sensor dependence, and
improved robustness across participants.

Despite these advances, several research gaps
remain unresolved. Inter-subject variability continues to
hinder generalization, with classification accuracy
fluctuating across individuals and datasets. Many
multimodal frameworks achieve high performance but
rely on complex sensor setups, limiting practical
adoption. Cross-domain insights from emotion
recognition have not been sufficiently integrated into
deception detection, reducing opportunities for transfer
learning. The scarcity of large-scale, diverse datasets
further restricts reproducibility and benchmarking.
Finally, while graph neural networks and transformers
have demonstrated strong representational power in
related EEG domains, their role in deception detection is
still largely unexplored.
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Fig. 1. Framework for Classification of Guilty and
Innocent Approach

Fig. 1 illustrates the proposed framework for classifying
EEG signals into guilty and innocent categories. The
process begins with EEG data acquisition and
preprocessing, followed by spectral-temporal feature
extraction using DWT and FFT. These features are then
fed into lightweight deep learning models (FBC-EEGNet,
InceptionTime-light, and their ensemble) to achieve
accurate and balanced classification. Given these
limitations, a lightweight, computationally efficient, and
channel-flexible architecture is essential for scalable
deception detection. Models that extact discriminative
temporal and spectral patterns from limited EEG
channels can significantly enhance real-world
applicability, particularly in forensic environments
where sensor constraints and rapid deployment are
common.

This study aims to address these gaps by developing
subject-independent frameworks that minimize inter-
subject variability and improve generalization across
individuals and datasets. The proposed work focuses on
lightweight, fast-converging architectures (FBC-EEGNet
and InceptionTime-light) that reduce dependence on
complex multimodal setups and improve training
efficiency. The study leverages spectral and temporal
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feature extraction using the Discrete Wavelet Transform

(DWT) and the Fast Fourier Transform (FFT), and

investigate ensemble learning to balance sensitivity,

specificity, and accuracy.

The contributions of this study are summarized as

follows:

1. Development of lightweight, fast-converging
architectures (FBC-EEGNet and InceptionTime-light)
that enhance robustness across subject groups.

2. Design of an ensemble framework to balance
sensitivity, specificity, and accuracy, addressing
metric imbalances observed in prior studies.

3. Integration of spectral (FFT) and temporal (DWT)
feature extraction methods to improve EEG signal
representation.

4. Proposal of a comparative framework evaluated on
two benchmark datasets (LieWaves and CIT),
ensuring reproducibility and generalizability.

This paper is structured as follows: Section Il describes
the datasets employed (LieWaves and CIT), along with
the preprocessing techniques, feature extraction
methods (DWT and FFT), and the proposed deep
learning architectures (FBC-EEGNet, InceptionTime-
light, and their ensemble). Section Il describes the
experimental setup, evaluation metrics, and
classification outcomes for distinguishing guilty and
innocent subjects. Section IV discusses the findings in
depth, including comparisons with prior studies,
interpretation of the results, and key limitations. Section
V concludes the paper by summarizing the major
contributions and suggesting directions for future
research.

Il. Materials and Method
A. Dataset

This study evaluates the proposed models on two
benchmark EEG datasets, LieWaves and CIT.

i) LieWaves Dataset [11]

The LieWaves dataset [11] was developed for lie
detection using EEG signals and wavelets. Each subject
participated in two experimental conditions—deceiver
and truth-teller. The dataset provides both raw and
preprocessed EEG signals, stored in .csv format,
enabling reproducibility and benchmarking. It focuses on
a constrained 5-channel setup (AF3, T7, Pz, T8, AF4),
making it suitable for evaluating lightweight deception
detection models.

ii) CIT Dataset [22]

The Concealed Information Test (CIT) dataset [22]
introduces a paradigm in which stimuli move
continuously to reduce habituation effects. It contains
EEG recordings from 79 participants across all major
EEG channels. Data is organized into two groups: SCR
condition (38 guilty vs. 39 innocent) and RLL condition

(39 guilty vs. 40 innocent). This dataset provides a larger
and more diverse pool for assessing the generalization
capability of deception detection models.

B. Data Collection

Both datasets were collected under controlled
experimental paradigms designed to elicit truthful and
deceptive responses. In LieWaves, participants were
instructed to either tell the truth or intentionally deceive
while being presented with visual and auditory stimuli.
EEG signals were recorded at a sampling frequency of
128 Hz using standard electrode placements. In CIT,
participants were exposed to critical, familiar, and
neutral items in a concealed information test format, with
continuous visual stimuli to reduce habituation. EEG
data were acquired across multiple scalp locations
following the 10-20 international system, ensuring
comprehensive coverage of neural activity.

C. Data Processing

The preprocessing pipeline consisted of the following

steps:

i) Band-pass filtering (0.5-45 Hz) to remove high-
frequency noise and low-frequency drifts.

ii) Artifact removal using Independent Component
Analysis (ICA) to eliminate ocular and muscular
artifacts.

iii) Channel selection: For LieWaves, five electrodes
(AF3, T7, Pz, T8, AF4) were used as provided; for
CIT, all available EEG channels were retained.

iv) Feature extraction: Spectral and temporal features
were derived using Discrete Wavelet Transform
(DWT) and Fast Fourier Transform (FFT), capturing
time—frequency dynamics of deceptive responses.

v) Normalization: Min-max scaling was applied to
standardize features across participants and
sessions.

To enhance reproducibility, the ICA procedure was
detailed by specifying kurtosis and correlation
thresholds. Components with kurtosis > 5 or correlation
> 0.90 with EOG references were removed to eliminate
ocular and muscle artifacts. The 0.5-45 Hz band-pass
filter was selected to preserve deception-related delta,
theta, alpha, and beta rhythms while attenuating slow
drift and EMG noise. The LieWaves dataset provides
only five channels by design; this configuration
constitutes a minimal-sensor setup intended for
lightweight deception detection. Conversely, all CIT
channels were retained to maintain frontal, central, and
parietal activity known to reflect recognition, conflict
monitoring, and cognitive control processes.

D. Statistical Analysis

For performance evaluation, models were trained using
a subject-wise cross-validation strategy to ensure
robustness across individuals. Five metrics were
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employed: accuracy, sensitivity, specificity, precision,
and F1-score, enabling a balanced assessment of
model performance. Comparative statistical analyses
with baseline models (e.g., ERP-P300, CNN) were
performed to validate the improvements.

F. Architecture and flow of Proposed Framework

Fig. 2. illustrates the end-to-end workflow of the
proposed EEG-based deception detection framework.
The process begins with EEG data acquisition followed
by preprocessing using a band-pass filter (0.5—45 Hz) to
suppress noise and retain relevant cognitive frequency
bands. After filtering, spectral-temporal features are
extracted using a hybrid approach that combines the
Discrete Wavelet Transform (DWT) for localized time—
frequency patterns and the Fast Fourier Transform
(FFT) for global spectral information. Feature selection
is then performed using the Binary BAT algorithm to
identify the most discriminative components for
classification. The selected features are subsequently
fed into lightweight deep leaming models for further
processing, vyielding a final prediction of guilt or
innocence. Performance is evaluated using Accuracy,
Sensitivity, and Specificity to ensure a balanced
assessment of detection reliability. Additionally, the
workflow  emphasizes minimal computational
complexity, making the framework suitable for real-time
or resource-constrained environments. The integration
of spectral and temporal descriptors ensures that both
transient and sustained neural markers of deception are
captured effectively. Overall, the figure highlights a
streamlined architecture designed to maximize
interpretability, scalability, and robustness across
diverse EEG datasets. Fig. 3. presents the architectural
flow of the proposed deep learning models, such as
FBC-EEGNet and InceptionTime-light, and their
ensemble for classifying deception-related EEG
signals. FBC-EEGNet incorporates  temporal

convolution, depthwise convolution, and separable
convolution layers to extract spatial-spectral
characteristics across different frequency bands.
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Fig. 3. Architecture of Proposed Framework

InceptionTime-light employs multi-scale temporal
kernels (sizes 10, 20, and 40), bottleneck 1x1
convolutions, and residual connections to effectively
capture temporal variations in deceptive neural activity.
The predictions of both models are fused through a
soft-voting or threshold-based ensemble mechanism,
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producing a unified decision to classify subjects as
guilty or innocent. The final outputs are evaluated using
standard performance metrics to ensure robustness
and generalization across datasets.

1. Preprocessing (band-pass and normalization)
Band-Pass Filtering (0.5-45 Hz). EEG data is first
cleaned to retain only the relevant frequency
components using a digital band-pass filter. It can be
calculated using Eq. (1) as follows [11]:

This is modeled as a linear time-invariant (LTI) system.

M A
yeln= ) bix [1=K = > anye [1-m] )
k=0 m

=1

Here, x. [n]denotes the input EEG signal from channel
¢ at time index n while y. [n] represents filtered EEG
output. The terms by and a,, denote the feed-forward
FIR and feedback IIR filter coefficients, respectively.
The parameter M indicates the order of the numerator,
and A represents the order of the denominator of the
filter. The band-pass filter ensures that: 0.5Hz < f <
45Hz. This range is selected to capture cognitive EEG
rhythms (e.g., delta, theta, alpha, beta) while
suppressing noise like DC drift and high-frequency
artifacts. Normalization (Z-Score). After filtering,
normalization is applied to standardize EEG data
across subjects and sessions, ensuring the model
focuses on meaningful variations. For each EEG
channel c, the Z-score normalization is calculated using
Eqg. (2) as follows [11]:

Rl = Xl e @
Here, x.[n]denotes the filtered EEG signal from
channel c. The parameters u. and o, represent the
mean and standard deviation of the channel c,
respectively. The normalized signal, denoted as X [n],
is obtained by transforming the original filtered signal
such that it has zero mean and unit variance.
Final Preprocessed EEG Signal. The final

preprocessed signal for each channel can be
calculated using Eq. (3) as follows [11]:
%, [n] = ye [n] = pe (3)
O-C

Here, y. [n] represents the band-pass filtered output for
the channel ¢, while u. and o¢. denote the mean and
standard deviation computed from this filtered signal.
2. Feature Extraction Methods (DWT and FFT)
Discrete Wavelet Transform (DWT). The DWT
decomposes EEG signals into approximation (low-
frequency) and detail (high-frequency) coefficients.
For a discrete EEG signalx[n], the multilevel wavelet
decomposition can be computed using Eq. (4) and Eq.
(5) as follows [11]:

Ajga= Y xln] 0, ()

n

Dy = Y xlnl g () (5)

n

Here, @;,(n)denotes the scaling function, which
corresponds to the low-pass filter used in the wavelet
decomposition, while ¢;, (n) represents the wavelet
function associated with the high-pass filter. The
coefficients A refer to the approximation
coefficients at decomposition level j, and
D; 1x) represent the corresponding detail coefficients at
the same level.

The approximation and detail coefficients can be
calculated using the convolution relations given in Eq.
(6) and (7) respectively as follows [11]:

A z x[m]. h[2k —m] (6)
Dipg= ) xml. glzk —m] (7)

where h[n] and g[n] are low-pass and high-pass filter
kernels, respectively, and the value of n is 2k — m.
Fast Fourier Transform (FFT). The FFT transforms the
EEG time-series signal into the frequency domain to
capture spectral features. It can be calculated using Eq.
(8) as follows [29]:

N-1

X[k] = Zx[n]. oI Hn (8)

n=0
Here, X[k] denotes the frequency component at index
k, and N represents the total number of samples in the
signal. The term j refers to the imaginary unit, defined
asj=+/-1.
The Power Spectral Density (PSD) is computed as:
P[k] = x[k]? This highlights dominant frequency bands
relevant for deception detection (e.g., theta, alpha,
beta).
3. Feature Vector Combination (DWT + FFT)
The final feature vector is a concatenation of both DWT
and FFT features. It can be calculated using Eq. (9) as
follows [11], [29]:
F =[Ay, Ay oo iAj,Dy, Dy, .. Dj, Py, Py e e P ] (9)
Here, A and D denote the approximation and detail
coefficients obtained from the discrete wavelet
transform (DWT), while P represents the spectral
power features extracted using the fast Fourier
transform (FFT). The combination of DWT and FFT
offers a comprehensive spectral-temporal
representation of deception-related neural activity. FFT
captures stable oscillatory behavior across canonical
frequency bands, whereas DWT isolates transient
changes linked to decision conflict, recognition, and
response inhibition. By concatenating DWT coefficients
from multiple decomposition levels with FFT-derived
spectral power, the model gains access to both short-
term temporal fluctuations and global frequency
patterns, improving discriminatory capability.
4. Ensemble Fusion - Soft Voting
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Two deep learning models (FBC-EEGNet and
InceptionTime-Light) generate prediction probabilities:
The soft voting ensemble output can be calculated
using Eq. (10) as follows [27]:
Pensemble - wl pl + w2 p2 (10)

Here P, denotes the probability estimate produced by
the FBC-EEGNet model, while P, represents the
corresponding probability output generated by the
InceptionTime-Light classifier. w1, w2 are weights for
each model. The final classification is based on a
threshold 6 (e.g, 8 = 0.5). It can be calculated using Eq.
(11) as follows [27]:

~ _ {1: if Pensemble =0 (Guilty) (11)

Y 2o, if Popsempie <0 (Innocent)
Soft voting was selected because it combines
probabilistic outputs, enabling the complementary
strengths of FBC-EEGNet (high specificity) and
InceptionTime-light (high sensitivity) to be exploited.
Preliminary experiments demonstrated that hard voting
and stacking introduced instability and reduced
sensitivity, whereas soft voting achieved consistently
balanced and robust classification across both
datasets.
5. Training Protocol and Hyperparameter Settings
All models were trained using the Adam optimizer
(learning rate = 0.001, B; = 0.9, B, = 0.999) with weight
decay of 1e-5. A maximum of 100 epochs was used,
with early stopping (patience = 10) based on the
validation loss. A batch size of 64 provided the best
trade-off between stability and training speed. Dropout
(0.3) was applied to fully connected layers to mitigate
overfitting. Subject-wise stratified cross-validation
ensured no data leakage between training and testing.
6. Performance Metrics
To assess the model's effectiveness, standard
performance measures such as Accuracy, Sensitivity
(Recall), and Specificity are employed. Each metric is
calculated using Egs. (12) — (15) as follows [23]:

TP + TN (12)
TP+ FP + FN + TN
TP

Accuracy =

VT L (13)
Sensitivity TPT‘E 7P

e AF (14)
Specificity TP+ FN

F1 Score = 2 * (Recall = Precision) (15)

Recall + Precision
Here, TP denotes the number of true positives, FP

represents the false positives, TN refers to the true
negatives, and FN indicates the false negatives used
for computing the evaluation metrics. These
parameters summarize the model's classification
behavior across correctly and incorrectly identified
samples. Together, they form the basis for deriving
Accuracy, Sensitivity, Specificity, and other diagnostic
performance measures that reflect the reliability of the
proposed deception-detection model.

Ill. Result

The following section describes the results of our
proposed framework. The experimental evaluation was
conducted to assess the effectiveness of the proposed
deep learning framework for EEG-based deception
detection. The results of this study provide a
comprehensive evaluation of the proposed EEG-based
deception-detection framework across two benchmark
datasets with distinct sensor configurations and subject
populations. The analysis focuses on examining how
effectively the three models FBC-EEGNEet,
InceptionTime-light, and their ensemble generalize
under subject-independent conditions and capture
deception-related neural signatures. To ensure fair
comparison, all models were trained using the same
preprocessing pipeline and evaluated using Accuracy,
Sensitivity, and Specificity, which together offer a
balanced view of classification performance. Statistical
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analyses, including paired t-tests and ANOVA, were
conducted to determine whether differences across
models were statistically significant rather than
incidental. In addition, visualization of spectral
characteristics, Z-scored responses, and channel-wise
mean estimates provides further insight into group
differences between guilty and innocent subjects. The
following  subsections  summarize  model-wise
performance, dataset-specific behavior, comparative
strengths, and operational implications derived from
the experimental findings. Fig. 4 a & b presents Welch-
based Power Spectral Density (PSD) estimates of Skin
Conductance Response (SCR) and Respiration Level
(RLL) for innocent and guilty groups. Both modalities
exhibit dominant energy below 0.5 Hz, reflecting slow
physiological oscillations. SCR shows peaks near 0 Hz
and ~1 Hz, while RLL decays sharply beyond 0.2 Hz,
consistent with respiration rhythms. Nearly complete
datasets were retained (SCR: 38/39 guilty, 39/40
innocent; RLL: 39/39 guilty, 40/40 innocent), ensuring
robust results. Band-wise analysis indicates subtle but
measurable differences across the Ultra-Low, Low, and
Respiratory ranges, suggesting the discriminative

potential of these physiological markers for
distinguishing between group conditions. Fig. 5.
illustrates Z-scored skin conductance (left) and

respiration (right) responses for innocent and guilty
groups across single (Repetition 1) and aggregated
(Repetitions 1-4) trials. Skin conductance shows a
consistent post-stimulus decline with clear group
separation, indicating stronger discriminative potential.
Respiration exhibits oscillatory fluctuations with largely
overlapping patterns, though localized differences are
captured by Cohen’s d. The results suggest that skin
conductance provides more reliable  group
differentiation compared to respiration across repeated

trials. Table 1. summarizes the numerical values of the
mean Z-scored ROI responses along with their SEM
across eight physiological channels for both guilty and
innocent subjects. The table highlights the direction
and magnitude of group differences for each channel,
allowing quantitative comparison beyond the visual
trends. Among SCR channels, SCR3 and SCR4 show
the largest absolute differences in mean values,
indicating that these channels exhibit the most distinct
physiological responses between groups. In contrast,
SCR1 and SCR2 display relatively small mean
differences, suggesting more subtle variations. For
respiration channels, the mean values for both groups
remain close to zero, reflecting minimal deviation from
baseline. However, opposite polarity in RLL1 and RLL3
suggests channel-specific modulation rather than a
uniform respiratory pattern across subjects. The SEM
values indicate moderate variability = across
participants, with slightly higher dispersion observed in
SCR4 and the respiration channels. Overall, the table
provides a precise numerical basis for identifying which
channels contribute most strongly to group separation
and which show limited discriminative potential.

Table 1. Channel-wise Group Means * SEM (ROI)
for Guilty and Innocent Subjects

Channel Guilty Innocent
(Mean + SEM) (Mean + SEM)
SCR1 0.0064 + 0.0125 -0.0093 + 0.0171
SCR2 0.0020 + 0.0064 0.0002 + 0.0101
SCR3 0.0028 + 0.0067 -0.0162 + 0.0089
SCR4 -0.0284 + 0.0124 -0.0029 + 0.0053
RLL1 -0.0163 + 0.0150 0.0045 + 0.0137
RLL2 -0.0041 + 0.0157 -0.0198 + 0.0143
RLL3 0.0131 + 0.0148 -0.0024 + 0.0150
RLL4 -0.0008 + 0.0142 -0.0055 + 0.0144
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Fig. 6. presents the channel-wise group means (+SEM)
for guilty and innocent participants across four Skin
Conductance Response (SCR) channels (SCR1-
SCR4) and four Respiration Level (RLL1-RLL4)
channels. The plot visualizes the normalized mean
activity (Z-scored ROI) for each physiological channel,
enabling comparison of group-level differences. In the
SCR domain, the guilty group shows elevated mean
responses in SCR1 and SCR3, whereas the innocent
group exhibits higher activity in SCR2 and reduced
suppression in SCR4. These patterns suggest that
SCR channels are more sensitive to deception-related
changes, with SCR3 and SCR4 showing the largest
polarity differences between groups. Error bars (SEM)
indicate variability across subjects, with SCR4
displaying notably higher variance in the guilty group,
reflecting heterogeneity in physiological responses
during deceptive trials. In contrast, respiration channels
(RLL1-RLL4) exhibit smaller group differences and
greater overlap between guilty and innocent
responses. RLL1 reveals a positive shift for innocents
relative to guilty subjects, while RLL3 shows the
opposite trend. RLL2 and RLL4 present minimal
separation, suggesting weaker discriminative value.
Overall, the figure highlights that SCR channels provide
clearer group differentiation than respiration channels,
offering more reliable cues for distinguishing
physiological correlates of deception. These findings
support the inclusion of SCR features as valuable
complementary biomarkers within deception detection
frameworks. Following Fig. 7. presents per-subject Z-
scored mean ROI values for guilty (a) and innocent (b)
participants, showing variability in individual
physiological responses. Guilty subjects display a
wider spread with several pronounced negative shifts,
suggesting stronger deviations during deceptive
behavior. Innocent subjects exhibit more balanced
values with fewer extremes, indicating relatively stable
baseline-like patterns. The experimental evaluation

was conducted on two publicly available datasets: the
LieWaves dataset [11] (27 subjects, 5 channels: AF3,
T7, Pz, T8, AF4) and the CIT dataset [22] (79 subjects,
16 channels: Fp1, Fp2, F3, F4, C3, C4, Cz, P3, P4, Pz,
01,02, T3 (T7), T4 (T8), T5 (P7), T6 (P8)). The results
were compared across three models: FBC-EEGNet,
InceptionTime-light, and their ensemble, using
Accuracy, Sensitivity, and Specificity as performance
metrics.

A. FBC-EEGNET Performance

On the 5-channel LieWaves dataset, FBC-EEGNet
achieved an accuracy of 71.6%, a sensitivity of
66.83%, and a specificity of 76.35%, demonstrating
reliable performance with a moderate balance between
guilty and innocent classifications. However, when
evaluated on the larger CIT dataset with 16 channels,
accuracy improved slightly to 70.8%, whereas
sensitivity dropped markedly to 25% and specificity
increased to 93.7%. This indicates that FBC-EEGNet
became highly biased towards correctly identifying
innocent subjects but struggled to detect guilty
responses. The decline in sensitivity in the 16-channel
CIT data arises because FBC-EEGNet relies on
depthwise convolutions, which are designed for
compact spatial patterns.

B. Inceptiontime-Light Performance

InceptionTime-light achieved an accuracy of 65.93%,
sensitivity of 57.78%, and specificity of 74.07% with the
5-channel configuration, showing relatively lower
performance compared to FBC-EEGNet. However, on
the 16-channel dataset, the model exhibited a
significant performance boost, achieving 79.2%
accuracy, 62.5% sensitivity, and 87.5% specificity.
These results highlight the scalability of InceptionTime-
light, as it was able to exploit the richer information from
additional EEG channels to deliver both high accuracy
and a balanced trade-off between sensitivity and
specificity. The model’s multi-scale temporal kernels
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Table 2. Comparative analysis of performance metrics for FBC-EEGNet, InceptionTimeLight and
Ensemble Model

No of No of I e .
Model Subjects Channels Accuracy Sensitivity  Specificity
27 5 71.6 66.83 76.35
FBC-EEGNET 79 16 70.8 25 93.7
IncentionTime-light 27 5 65.93 57.78 74.07
: g 79 16 79.2 62.5 87.5
Ensemble Model (FBC- 27 5 61.11 46.67 75.56
EEGNet+ InceptionTime-light) 79 16 708 625 75
appear to capture subtle variations in deception-related information was limited. On the 16-channel dataset,
neural dynamics more effectively when broader spatial however, the ensemble achieved 70.8% accuracy,

information is available. This also indicates that 62.5% sensitivity, and 78.6% specificity. While
InceptionTime-light is particularly suited for datasets accuracy remained similar to standalone FBC-
with diverse cortical coverage, where temporal patterns EEGNet, sensitivity improved substantially compared

interact with spatial features more prominently. to FBC-EEGNet alone, though with a trade-off in
C. Ensemble Model (FBC-EEGNET + Inceptiontime- specificity. This suggests that ensemble fusion helped
Light) stabilize guilty classification performance by leveraging
The ensemble model performed sub-optimally on the the complementary strengths of both models. The
5-channel dataset, with an accuracy of 61.11%, inconsistent gains from ensemble fusion can be
sensitivity of 46.67%, and specificity of 75.56%, attributed to correlated prediction errors between the

indicating that fusion was less effective when input
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two networks; when both FBC-EEGNet and
InceptionTime-light misclassified the same noisy or
weakly expressed guilty trials, soft voting averaged
these errors instead of correcting them. Such error
overlap reduces the diversity required for ensemble
methods to be effective. The improvement observed
with the 16-channel dataset further implies that
ensemble strategies benefit more from richer spatial
information. Overall, these findings highlight that
ensemble performance is highly dependent on channel
density, feature diversity, and the independence of
model predictions.

D. Comparative Insights

This section describes a comparative analysis of
different models with two datasets. Lightweight deep
learning models showed distinct strengths in deception
detection, with FBC-EEGNet excelling in specificity and
InceptionTime-light delivering the most balanced and
accurate performance. The ensemble model provided
an intermediate solution, outperforming traditional
ERP- and CNN-based approaches in robustness and
generalization. Table 2. and Fig. 8. describes
Comparative analysis of performance metrics for FBC-
EEGNet, InceptionTimeLight, and Ensemble Model.

A paired t-test conducted on the CIT dataset
revealed that InceptionTime-light's accuracy was
significantly higher than that of FBC-EEGNet (1(78) =
412, p < 0.001). One-way ANOVA on the 5-channel
LieWaves dataset showed a significant effect of model
choice on accuracy (F(2,26) = 6.47, p < 0.01). These
analyses confirm that observed differences are
statistically meaningful rather than random variation.
These metric trade-offs have important operational
implications. High specificity reduces false accusations

against innocent individuals, which is crucial in forensic
contexts, while high sensitivity ensures that deceptive
individuals are not overlooked. Therefore, selecting the
optimal model depends heavily on whether minimizing
false positives or false negatives is more critical for
deployment. Compared to traditional ERP-P300 or

CNN baselines, the proposed lightweight models

demonstrated superior performance and

generalization.

E. Key Insights and Implications

a) InceptionTime-Light excels with higher channel
data, making it ideal for systems with rich EEG
configurations.

b) FBC-EEGNet is robust at detecting innocent
individuals but fails to generalize to guilty
classification in complex datasets.

c) The ensemble model provides a balanced
approach, especially valuable in real-world
deception detection, where false negatives (guilty
classified as innocent) must be minimized.

These results indicate that, for practical deployment, a

hybrid strategy incorporating InceptionTime-Light for

initial detection and ensemble fusion for final decision-
making would yield a more reliable deception detection
framework. Misclassification analysis revealed that
guilty trials with weak frontal-theta engagement were
often labeled as innocent, likely due to low SNR.

Conversely, innocent trials contaminated by motion or

transient high-frequency bursts were sometimes

misclassified as guilty. Fig. 9. presents the
performance metrics of the proposed framework,

showing accuracy (a), sensitivity (b), and specificity (c)

across different model configurations and datasets.

The plots highlight how

Comparative Analysis of proposed Framework
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Fig. 8. Comparative Analysis of Accuracy, Sensitivity and Specificity for Proposed Framework
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each model varies in classification behavior, with
notable differences in detection capability depending
on channel density and architectural design.

IV. Discussion

This study aims to provide a deeper understanding of
how lightweight temporal deep learning architectures
interpret deception-related EEG activity and how
effectively they can generalize across datasets with
different channel configurations. The results indicate
that deceptive responses are better represented
through distributed spectral-temporal patterns rather
than isolated event-related components, supporting
recent neurophysiological evidence that deception
engages multi-stage cognitive processes such as
conflict monitoring and recognition responses [7]
These dynamics unfold over time, making temporal
feature extractors particularly suitable for identifying
guilty trials. A clear differentiation was observed in how
the models captured these neural characteristics.
InceptionTime-light showed the strongest performance
on the CIT dataset, suggesting that its multi-scale
temporal kernels  effectively  represent the
heterogeneous structure of deception-related EEG
signals. In contrast, FBC-EEGNet consistently
produced higher specificity values, which is useful in
applications where minimizing false positives is
essential. Although the ensemble fusion integrated the
complementary strengths of both models, its
performance remained limited by correlated prediction
errors. This highlights the need for more diverse feature
representations or hybrid temporal—spatial
architectures to improve ensemble consistency.
Comparison with prior deception detection studies
further supports the relevance of temporal modeling.

Traditional ERP-based methods relying primarily on
P300 amplitude often struggle with inter-individual
variability and limited generalization [5].

Similarly, earlier CNN-based approaches reported
moderate accuracy and sensitivity due to their focus on
spatial filtering rather than temporal progression [8]
The current findings extend these observations by
demonstrating that compact temporal models can
generalize more effectively across different paradigms
when provided with sufficiently rich EEG inputs,
aligning with emerging evidence on the advantages of
temporal deep learning for EEG analysis [14]. Despite
these strengths, several limitations must be
acknowledged. The reduced performance on the 5-
channel LieWaves dataset indicates that limited spatial
coverage constrains the model's ability to learn
distributed deception-related patterns. The use of
multi-level DWT in the feature extraction pipeline adds
computational cost, potentially limiting real-time
deployment.

Additionally, differences between the two datasets
in paradigm structure, sample size, and sensor
configuration restrict cross-paradigm generalizability.
Misclassification patterns further reveal sensitivity to
low-amplitude guilty responses and residual artifacts,
indicating the need for more robust preprocessing,
noise-aware architectures, or adaptive thresholding
mechanisms. Overall, the study contributes to the
growing understanding that deception-related EEG
activity is fundamentally temporal and distributed,
rather than solely ERP-driven. The demonstrated
performance of lightweight temporal deep learning
models shows promise for practical deception
detection systems, especially in scenarios where
sensor limitations or deployment constraints exist.

Table 3. Comparative analysis of performance metrics with existing approach

Reference Model Accuracy
[22] EEG-ITNet (Inception CNN) 78%
[23] EEG-Inception (InceptionTime variant) 75%
[13] EEGNet (baseline) 78%
[11] EEGNet & Inception CNNs 70%

This Study EEGNet, InceptionTime-light 79.20%

Table 3 and Error! Reference source not found..
illustrate the comparative analysis of performance
metrics with the existing approach used for EEG
deception detection. The findings of this study indicate
that lightweight deep learning architectures can
achieve strong and balanced performance in EEG-
based deception detection. InceptionTime-light
obtained an accuracy of 79.2% on the CIT dataset,
which is slightly higher than EEG-ITNet (78%) [22] and

EEGNet (78%) [13], and clearly above EEG-Inception
(75%) [23] and the combined EEGNet & Inception
CNNs (70%) [11]. This improvement suggests that
models designed for efficiency and fast convergence
can rival, or even surpass, more complex frameworks.
A notable observation is that FBC-EEGNet tended to
maximize specificity, whereas InceptionTime-light
provided a better trade-off between sensitivity and
specificity, making it more suitable as a standalone
model. The ensemble model offered additional stability,
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Fig. 9. Performance Metrics of proposed framework (a) Accuracy, (b) Sensitivity and (c) Specificity

particularly in guilty classification, but did not dataset, suggesting that access to a richer set of EEG
consistently outperform InceptionTime-light in overall channels is important for reliable classification.
accuracy. Accuracy, sensitivity, and specificity were Furthermore, while the use of DWT and FFT enhanced
emphasized because each addresses a different feature representation, these preprocessing steps may
forensic requirement. Sensitivity reflects the ability to restrict seamless deployment in real-time systems.
correctly identify guilty individuals, specificity measures Cross-dataset variability also remains a challenge, as
the correct identification of innocents, and accuracy the models were not tested extensively on unseen
provides an overall performance summary. Using these experimental paradigms. Even so, the results show
metrics together enables a balanced and transparent clear potential: lightweight architectures not only
evaluation. Cross-dataset variability was noticeable, outperform many ERP-P300 and CNN-based

with performance dropping on the 5-channel dataset. baselines but also provide a scalable direction for
Confidence intervals provide further insight: on the CIT practical applications in forensic and security contexts.
dataset, InceptionTime-light achieved 79.2% + 3.1%, Future work should address real-time optimization and

whereas FBC-EEGNet yielded 70.8% * 4.5%. These explore advanced methods, such as graph neural
findings suggest dataset-specific dependencies and networks and transformers, to further improve
highlight the need for domain adaptation strategies to robustness and generalization. Future work should
improve cross-paradigm robustness. At the same time, explore integrating explainable Al techniques to
several limitations should be recognized. The models enhance interpretability, refining hybrid temporal-
performed less effectively on the 5-channel LieWaves spatial architectures for improved robustness, and
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validating the proposed framework on larger,
heterogeneous EEG datasets to support broader real-
world applicability. Further research may also
investigate domain-adaptation strategies to reduce
cross-paradigm variability and assess the feasibility of
deploying these models in portable, low-channel
systems for field-level deception screening.

V. Conclusion

This study aims to classify subjects as guilty or
innocent in a Concealed Information Test using EEG
signals and lightweight temporal deep learning models.
The experimental results showed that InceptionTime-
light achieved the highest accuracy of 79.2%,
outperforming FBC-EEGNet (71.6% on LieWaves and
70.8% on CIT) and the ensemble model (61.11% and
70.8%). An additional finding was that FBC-EEGNet
consistently produced higher specificity values
(76.35%—93.7%), indicating stronger performance in
reducing false positives, while InceptionTime-light
offered a more balanced trade-off between sensitivity
and specificity. Although designed to combine the
strengths of both networks, the ensemble model did not
yield significant improvements and exhibited reduced
sensitivity in several cases. Overall, the findings
highlight the suitability of InceptionTime-light for
subject-independent EEG-based deception detection,
especially when balanced evaluation metrics are
required. Future research should explore incorporating
explainable Al methods to enhance interpretability,
refining hybrid architectures to improve robustness,
and validating the framework on larger, more diverse,
and multi-session EEG datasets to support broader
real-world deployment.
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