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Abstract: Deception detection with electroencephalography (EEG) is still an open problem as a result of 

inter-individual variability of brain activity and neural dynamics of deceitful responses. Traditional methods 

fail to perform well in terms of consistent generalization, and as a result, research has ahifted towards 

exploring sophisticated deep learning methods for Concealed Information Tests (CIT). The objective of the 

present study is to categorize subjects as guilty or innocent based on EEG measurements and rigorously 

test model performance in terms of accuracy, sensitivity, and specificity. To achieve this, experiments were 

conducted on two EEG datasets: the LieWaves dataset, consisting of 27 subjects recorded with five 

channels (AF3, T7, Pz, T8, AF4), and the CIT dataset, comprising 79 subjects recorded with 16 channels 

(Fp1, Fp2, F3, F4, C3, C4, Cz, P3, P4, Pz, O1, O2, T3/T7, T4/T8, T5/P7, T6/P8). Preprocessing involved a band-

pass filter for noise reduction, followed by feature extraction using the Discrete Wavelet Transform (DWT) 

and the Fast Fourier Transform (FFT). Three models were evaluated: FBC-EEGNet, InceptionTime-light, and 

their ensemble. Results indicate that InceptionTime-light achieved the highest accuracy of 79.2% on the 

CIT dataset, surpassing FBC-EEGNet (70.8%). On the LieWaves dataset, FBC-EEGNet achieved superior 

performance, with 71.6% accuracy, compared with InceptionTime-light (65.93%). In terms of specificity, 

FBC-EEGNet reached 93.7% on the CIT dataset, while InceptionTime-light demonstrated balanced 

performance with 62.5% sensitivity and 87.5% specificity. Notably, the ensemble model provided stable 

and generalizable outcomes, yielding 70.8% accuracy, 62.5% sensitivity, and 75% specificity on the CIT 

dataset, confirming its robustness across subject groups. In conclusion, FBC-EEGNet is effective for 

maximizing specificity, InceptionTime-light achieves higher accuracy, and the ensemble model delivers a 

balanced trade-off. The implications of this work are to advance reliable EEG-based deception detection 

and to set the stage for future research on explainable and interpretable models, validated on larger and 

more diverse datasets. 

Keywords: EEG, Deception Detection, FBC-EEGNet, InceptionTime-light, Ensemble Model. 

I. Introduction  

Electroencephalography (EEG) has emerged as a 

powerful tool for studying brain activity due to its non-

invasive nature and high temporal resolution. It has been 

widely applied in domains such as emotion recognition 

and deception detection. While emotion recognition 

leverages EEG signals to analyze affective states, 

deception detection primarily focuses on identifying 

guilty or innocent responses in Concealed Information 

Tests (CIT) and related paradigms. Traditional 

approaches relied on event-related potentials (ERP) 

such as the P300, which provided valuable neural 

markers of recognition. However, these methods often 

struggled to generalize across individuals and required 

controlled laboratory settings, thereby limiting their real-

world applicability. Despite progress, current EEG-

based deception-detection techniques still face several 

unresolved limitations. Most ERP-based methods rely 

heavily on P300 amplitude differences, which vary 

substantially across individuals and across sessions, 

resulting in poor generalization in subject-independent 

settings. Several deep learning models have improved 

performance, but often depend on complex 

architectures or multimodal sensor combinations, which 

increase computational cost and hinder practical 

applicability. Moreover, lightweight frameworks 

proposed in prior studies either underperform across 

diverse datasets or struggle to balance sensitivity and 

specificity, both essential for forensic and security 

applications. These limitations highlight the need for 
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efficient, lightweight, and generalizable architectures 

such as those investigated in this study. 

In recent years, deep learning and multimodal fusion 

methods have been increasingly employed to overcome 

these limitations. Wang et al. [1] improved robustness in 

emotion recognition by combining EEG functional 

connectivity with eye tracking, while Zhang and Li [2] 

introduced EEGFuseNet, an unsupervised hybrid model 

capable of extracting richer spatial–temporal features. 

Attention mechanisms further advanced the field, with 

Chen and Zhao [3] utilizing spectral, spatial, temporal, 

and channel information for improved classification. 

Multimodal approaches, such as fusing EEG with GSR 

and HRV [4] or EEG with fNIRS [6], demonstrated higher 

accuracy but introduced complexity in terms of sensors 

and deployment. For deception detection, studies such 

as Geven et al. [5] (fCIT with FRN/P300) and Kim and 

Park [8] (CNN-based automated lie detection) showed 

the effectiveness of modern methods but highlighted 

persistent challenges, such as inter-subject variability 

and imbalanced performance metrics. Furthermore, the 

release of new datasets such as LieWaves [11] and 

meta-analyses on CIT [22] have enhanced 

benchmarking, but large-scale, diverse, and multi-

session datasets remain limited. Advanced models like 

graph neural networks [10], [21] and transformers [19], 

[20] have shown promise in other EEG domains but 

remain underexplored in deception detection. 

Deceptive behavior engages multiple cortical 

regions, including the prefrontal cortex, anterior 

cingulate cortex, and parietal areas, which mediate 

cognitive control, conflict monitoring, and recognition 

processing. These neural processes manifest as distinct 

EEG patterns such as frontal theta enhancement, alpha 

suppression, and altered beta synchronization, during 

guilty recognition. Since these changes occur at specific 

spectral and temporal scales, spectral features extracted 

using the FFT and time–frequency features extracted 

using the DWT are critical for capturing deception-

related neural dynamics. FFT highlights stationary 

oscillatory activity, whereas DWT isolates rapid transient 

variations, making the combination of both approaches 

highly effective for deception detection tasks. While 

several recent studies have explored CNN-based 

architectures, ERP-driven methods, or multimodal 

fusion, many fail to directly address the strong inter-

subject variability or the challenges associated with 

reduced-channel configurations commonly found in 

practical scenarios. CNN-based approaches, such as 

those by Kim and Park [8], provide spatial filtering but 

show inconsistent generalization across datasets, 

whereas ERP/fCIT approaches remain sensitive to 

habituation. More advanced models, including GNNs 

and transformers, deliver rich representational power but 

demand high computational resources and longer 

training times, thereby limiting their applicability to 

lightweight forensic deployments. In contrast, the 

present study focuses on compact models that achieve 

rapid convergence, reduced sensor dependence, and 

improved robustness across participants.  

Despite these advances, several research gaps 

remain unresolved. Inter-subject variability continues to 

hinder generalization, with classification accuracy 

fluctuating across individuals and datasets. Many 

multimodal frameworks achieve high performance but 

rely on complex sensor setups, limiting practical 

adoption. Cross-domain insights from emotion 

recognition have not been sufficiently integrated into 

deception detection, reducing opportunities for transfer 

learning. The scarcity of large-scale, diverse datasets 

further restricts reproducibility and benchmarking. 

Finally, while graph neural networks and transformers 

have demonstrated strong representational power in 

related EEG domains, their role in deception detection is 

still largely unexplored. 

 
Fig. 1. Framework for Classification of Guilty and 
Innocent Approach 

Fig. 1  illustrates the proposed framework for classifying 
EEG signals into guilty and innocent categories. The 
process begins with EEG data acquisition and 
preprocessing, followed by spectral–temporal feature 
extraction using DWT and FFT. These features are then 
fed into lightweight deep learning models (FBC-EEGNet, 
InceptionTime-light, and their ensemble) to achieve 
accurate and balanced classification. Given these 
limitations, a lightweight, computationally efficient, and 
channel-flexible architecture is essential for scalable 
deception detection. Models that extact discriminative 
temporal and spectral patterns from limited EEG 
channels can significantly enhance real-world 
applicability, particularly in forensic environments 
where sensor constraints and rapid deployment are 
common. 

This study aims to address these gaps by developing 

subject-independent frameworks that minimize inter-

subject variability and improve generalization across 

individuals and datasets. The proposed work focuses on 

lightweight, fast-converging architectures (FBC-EEGNet 

and InceptionTime-light) that reduce dependence on 

complex multimodal setups and improve training 

efficiency. The study leverages spectral and temporal 
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feature extraction using the Discrete Wavelet Transform 

(DWT) and the Fast Fourier Transform (FFT), and 

investigate ensemble learning to balance sensitivity, 

specificity, and accuracy. 

The contributions of this study are summarized as 

follows: 

1. Development of lightweight, fast-converging 

architectures (FBC-EEGNet and InceptionTime-light) 

that enhance robustness across subject groups. 

2. Design of an ensemble framework to balance 

sensitivity, specificity, and accuracy, addressing 

metric imbalances observed in prior studies. 

3. Integration of spectral (FFT) and temporal (DWT) 

feature extraction methods to improve EEG signal 

representation. 

4. Proposal of a comparative framework evaluated on 

two benchmark datasets (LieWaves and CIT), 

ensuring reproducibility and generalizability. 

This paper is structured as follows: Section II describes 
the datasets employed (LieWaves and CIT), along with 
the preprocessing techniques, feature extraction 
methods (DWT and FFT), and the proposed deep 
learning architectures (FBC-EEGNet, InceptionTime-
light, and their ensemble). Section III describes the 
experimental setup, evaluation metrics, and 
classification outcomes for distinguishing guilty and 
innocent subjects. Section IV discusses the findings in 
depth, including comparisons with prior studies, 
interpretation of the results, and key limitations. Section 
V concludes the paper by summarizing the major 
contributions and suggesting directions for future 
research. 

 

II. Materials and Method  

A. Dataset 

This study evaluates the proposed models on two 
benchmark EEG datasets, LieWaves and CIT. 

i) LieWaves Dataset [11] 

The LieWaves dataset [11] was developed for lie 
detection using EEG signals and wavelets. Each subject 
participated in two experimental conditions—deceiver 
and truth-teller. The dataset provides both raw and 
preprocessed EEG signals, stored in .csv format, 
enabling reproducibility and benchmarking. It focuses on 
a constrained 5-channel setup (AF3, T7, Pz, T8, AF4), 
making it suitable for evaluating lightweight deception 
detection models. 

ii) CIT Dataset [22] 

The Concealed Information Test (CIT) dataset [22] 
introduces a paradigm in which stimuli move 
continuously to reduce habituation effects. It contains 
EEG recordings from 79 participants across all major 
EEG channels. Data is organized into two groups: SCR 
condition (38 guilty vs. 39 innocent) and RLL condition 

(39 guilty vs. 40 innocent). This dataset provides a larger 
and more diverse pool for assessing the generalization 
capability of deception detection models. 

B. Data Collection 

Both datasets were collected under controlled 
experimental paradigms designed to elicit truthful and 
deceptive responses. In LieWaves, participants were 
instructed to either tell the truth or intentionally deceive 
while being presented with visual and auditory stimuli. 
EEG signals were recorded at a sampling frequency of 
128 Hz using standard electrode placements. In CIT, 
participants were exposed to critical, familiar, and 
neutral items in a concealed information test format, with 
continuous visual stimuli to reduce habituation. EEG 
data were acquired across multiple scalp locations 
following the 10–20 international system, ensuring 
comprehensive coverage of neural activity. 

C. Data Processing 

The preprocessing pipeline consisted of the following 
steps: 
i) Band-pass filtering (0.5–45 Hz) to remove high-

frequency noise and low-frequency drifts. 

ii) Artifact removal using Independent Component 

Analysis (ICA) to eliminate ocular and muscular 

artifacts. 

iii) Channel selection: For LieWaves, five electrodes 

(AF3, T7, Pz, T8, AF4) were used as provided; for 

CIT, all available EEG channels were retained. 

iv) Feature extraction: Spectral and temporal features 

were derived using Discrete Wavelet Transform 

(DWT) and Fast Fourier Transform (FFT), capturing 

time–frequency dynamics of deceptive responses. 

v) Normalization: Min–max scaling was applied to 

standardize features across participants and 

sessions. 

To enhance reproducibility, the ICA procedure was 
detailed by specifying kurtosis and correlation 
thresholds. Components with kurtosis > 5 or correlation 
> 0.90 with EOG references were removed to eliminate 
ocular and muscle artifacts. The 0.5–45 Hz band-pass 
filter was selected to preserve deception-related delta, 
theta, alpha, and beta rhythms while attenuating slow 
drift and EMG noise. The LieWaves dataset provides 
only five channels by design; this configuration 
constitutes a minimal-sensor setup intended for 
lightweight deception detection. Conversely, all CIT 
channels were retained to maintain frontal, central, and 
parietal activity known to reflect recognition, conflict 
monitoring, and cognitive control processes. 

D. Statistical Analysis 

For performance evaluation, models were trained using 
a subject-wise cross-validation strategy to ensure 
robustness across individuals. Five metrics were 
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employed: accuracy, sensitivity, specificity, precision, 
and F1-score, enabling a balanced assessment of 
model performance. Comparative statistical analyses 
with baseline models (e.g., ERP-P300, CNN) were 
performed to validate the improvements. 

F. Architecture and flow of Proposed Framework 

Fig. 2. illustrates the end-to-end workflow of the 
proposed EEG-based deception detection framework. 
The process begins with EEG data acquisition followed 
by preprocessing using a band-pass filter (0.5–45 Hz) to 
suppress noise and retain relevant cognitive frequency 
bands. After filtering, spectral–temporal features are 
extracted using a hybrid approach that combines the 
Discrete Wavelet Transform (DWT) for localized time–
frequency patterns and the Fast Fourier Transform 
(FFT) for global spectral information. Feature selection 
is then performed using the Binary BAT algorithm to 
identify the most discriminative components for 
classification. The selected features are subsequently 
fed into lightweight deep learning models for further 
processing, yielding a final prediction of guilt or 
innocence. Performance is evaluated using Accuracy, 
Sensitivity, and Specificity to ensure a balanced 
assessment of detection reliability. Additionally, the 
workflow emphasizes minimal computational 
complexity, making the framework suitable for real-time 
or resource-constrained environments. The integration 
of spectral and temporal descriptors ensures that both 
transient and sustained neural markers of deception are 
captured effectively. Overall, the figure highlights a 
streamlined architecture designed to maximize 
interpretability, scalability, and robustness across 
diverse EEG datasets. Fig. 3. presents the architectural 
flow of the proposed deep learning models, such as 
FBC-EEGNet and InceptionTime-light, and their 
ensemble for classifying deception-related EEG 
signals. FBC-EEGNet incorporates temporal 

convolution, depthwise convolution, and separable 
convolution layers to extract spatial–spectral 
characteristics across different frequency bands. 
 

 
Fig. 3. Architecture of Proposed Framework 

InceptionTime-light employs multi-scale temporal 
kernels (sizes 10, 20, and 40), bottleneck 1×1 
convolutions, and residual connections to effectively 
capture temporal variations in deceptive neural activity. 
The predictions of both models are fused through a 
soft-voting or threshold-based ensemble mechanism, 

         
                                                        Fig. 2. Flow of Proposed Framework 
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producing a unified decision to classify subjects as 
guilty or innocent. The final outputs are evaluated using 
standard performance metrics to ensure robustness 
and generalization across datasets. 
1. Preprocessing (band-pass and normalization) 

Band-Pass Filtering (0.5–45 Hz). EEG data is first 
cleaned to retain only the relevant frequency 
components using a digital band-pass filter. It can be 
calculated using Eq. (1) as follows [11]: 

This is modeled as a linear time-invariant (LTI) system. 

yc [n] =  ∑ bk

M

k=0

 xc  [n − k] −  ∑ am

A

m=1

 yc  [n − m] 
 
(1) 

Here, xc [n]denotes the input EEG signal from channel 

𝑐 at time index n while yc [n] represents filtered EEG 

output. The terms bk and am denote the feed-forward 

FIR and feedback IIR filter coefficients, respectively. 
The parameter  M  indicates the order of the numerator, 
and A represents the order of the denominator of the 

filter. The band-pass filter ensures that:  0.5Hz ≤ f ≤ 
45Hz. This range is selected to capture cognitive EEG 
rhythms (e.g., delta, theta, alpha, beta) while 
suppressing noise like DC drift and high-frequency 
artifacts. Normalization (Z-Score). After filtering, 
normalization is applied to standardize EEG data 
across subjects and sessions, ensuring the model 
focuses on meaningful variations. For each EEG 
channel c, the Z-score normalization is calculated using 

Eq. (2) as follows [11]: 

xc̃ [n] =  
xc [n] −  𝜇c 

𝜎c
 (2) 

Here, xc [n] denotes the filtered EEG signal from 
channel 𝑐. The parameters 𝜇c and 𝜎c represent the 

mean and standard deviation of the channel 𝑐, 

respectively. The normalized signal, denoted as xc̃ [n], 
is obtained by transforming the original filtered signal 
such that it has zero mean and unit variance. 
Final Preprocessed EEG Signal. The final 
preprocessed signal for each channel can be 
calculated using Eq. (3) as follows [11]: 
 

xĉ [n] =  
yc [n] −  𝜇c 

𝜎c
 (3) 

Here, yc [n] represents the band-pass filtered output for 

the channel 𝑐, while 𝜇c and  𝜎c denote the mean and 

standard deviation computed from this filtered signal. 
2. Feature Extraction Methods (DWT and FFT) 

Discrete Wavelet Transform (DWT). The DWT 
decomposes EEG signals into approximation (low-
frequency) and detail (high-frequency) coefficients. 
For a discrete EEG signal𝑥[𝑛], the multilevel wavelet 

decomposition can be computed using Eq. (4) and Eq. 
(5) as follows [11]: 

𝐴𝑗 [𝑘]=  ∑ 𝑥[𝑛] ∅𝑗,𝑘(𝑛)

𝑛

       
     (4) 

 𝐷𝑗 [𝑘]   =   ∑ 𝑥[𝑛] 𝜑𝑗,𝑘  (𝑛)

𝑛

 
     (5) 

Here, ∅𝑗,𝑘(𝑛) denotes the scaling function, which 

corresponds to the low-pass filter used in the wavelet 
decomposition, while 𝜑𝑗,𝑘  (𝑛) represents the wavelet 

function associated with the high-pass filter. The 
coefficients 𝐴𝑗 [𝑘]   refer to the approximation 

coefficients at decomposition level 𝑗, and 
𝐷𝑗 [𝑘]   represent the corresponding detail coefficients at 

the same level. 

The approximation and detail coefficients can be 
calculated using the convolution relations given in Eq. 
(6) and (7) respectively as follows [11]: 

𝐴𝑗 [𝑘]  =     ∑ 𝑥[𝑚] .  ℎ[2𝑘 − 𝑚] 

𝑚

 (6) 

𝐷𝑗 [𝑘]  =     ∑ 𝑥[𝑚] .  𝑔[2𝑘 − 𝑚] 

𝑚

 (7) 

where ℎ[𝑛] and 𝑔[𝑛] are low-pass and high-pass filter 

kernels, respectively, and the value of 𝑛 is 2𝑘 − 𝑚. 

Fast Fourier Transform (FFT). The FFT transforms the 
EEG time-series signal into the frequency domain to 
capture spectral features. It can be calculated using Eq. 
(8) as follows [29]: 

𝑋[𝑘]  =   ∑ 𝑥[𝑛] .  𝑒−𝑗 
2𝜋
𝑁 𝑘𝑛

𝑁−1

𝑛=0

 (8) 

Here, 𝑋[𝑘] denotes the frequency component at index 

𝑘, and 𝑁 represents the total number of samples in the 

signal. The term 𝑗 refers to the imaginary unit, defined 

as 𝑗 = √−1.  

The Power Spectral Density (PSD) is computed as: 
𝑃[𝑘] = x[𝑘]2 This highlights dominant frequency bands 

relevant for deception detection (e.g., theta, alpha, 
beta). 
3. Feature Vector Combination (DWT + FFT) 

The final feature vector is a concatenation of both DWT 
and FFT features. It can be calculated using Eq. (9) as 
follows [11], [29]: 
𝐹 = [𝐴1, 𝐴2, … … . . 𝐴𝑗 , 𝐷1, 𝐷2, … … . . 𝐷𝑗, 𝑃1, 𝑃2, … … . . 𝑃𝑘 ] (9) 

Here, 𝐴 and 𝐷 denote the approximation and detail 

coefficients obtained from the discrete wavelet 
transform (DWT), while 𝑃 represents the spectral 

power features extracted using the fast Fourier 
transform (FFT). The combination of DWT and FFT 
offers a comprehensive spectral–temporal 
representation of deception-related neural activity. FFT 
captures stable oscillatory behavior across canonical 
frequency bands, whereas DWT isolates transient 
changes linked to decision conflict, recognition, and 
response inhibition. By concatenating DWT coefficients 
from multiple decomposition levels with FFT-derived 
spectral power, the model gains access to both short-
term temporal fluctuations and global frequency 
patterns, improving discriminatory capability. 
4. Ensemble Fusion – Soft Voting  
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Two deep learning models (FBC-EEGNet and 
InceptionTime-Light) generate prediction probabilities: 
The soft voting ensemble output can be calculated 
using Eq. (10) as follows [27]: 

𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒   =  𝜔1 𝑝1 +  𝜔2 𝑝2 (10) 

Here  𝑃1 denotes the probability estimate produced by 

the FBC-EEGNet model, while 𝑃2 represents the 

corresponding probability output generated by the 
InceptionTime-Light classifier. 𝜔1, 𝜔2 are weights for 

each model. The final classification is based on a 
threshold 𝜃 (e.g, 𝜃 = 0.5). It can be calculated using Eq. 

(11) as follows [27]: 

𝑦 ̂ = {
1, 𝑖𝑓 𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒   ≥ 0     (𝐺𝑢𝑖𝑙𝑡𝑦)
0, 𝑖𝑓 𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒    < 0     (𝐼𝑛𝑛𝑜𝑐𝑒𝑛𝑡)

 
(11) 

Soft voting was selected because it combines 
probabilistic outputs, enabling the complementary 
strengths of FBC-EEGNet (high specificity) and 
InceptionTime-light (high sensitivity) to be exploited. 
Preliminary experiments demonstrated that hard voting 
and stacking introduced instability and reduced 
sensitivity, whereas soft voting achieved consistently 
balanced and robust classification across both 
datasets. 
5. Training Protocol and Hyperparameter Settings 

All models were trained using the Adam optimizer 
(learning rate = 0.001, β₁ = 0.9, β₂ = 0.999) with weight 

decay of 1e-5. A maximum of 100 epochs was used, 
with early stopping (patience = 10) based on the 
validation loss. A batch size of 64 provided the best 
trade-off between stability and training speed. Dropout 
(0.3) was applied to fully connected layers to mitigate 
overfitting. Subject-wise stratified cross-validation 
ensured no data leakage between training and testing. 
6. Performance Metrics 
To assess the model's effectiveness, standard 
performance measures such as Accuracy, Sensitivity 
(Recall), and Specificity are employed. Each metric is 
calculated using Eqs. (12) – (15) as follows [23]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(13) 

Specificity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

F1 Score =  
2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(15) 

Here, TP denotes the number of true positives, FP 
represents the false positives, TN refers to the true 
negatives, and FN indicates the false negatives used 
for computing the evaluation metrics. These 
parameters summarize the model’s classification 
behavior across correctly and incorrectly identified 
samples. Together, they form the basis for deriving 
Accuracy, Sensitivity, Specificity, and other diagnostic 
performance measures that reflect the reliability of the 
proposed deception-detection model. 
 

III. Result  

The following section describes the results of our 
proposed framework. The experimental evaluation was 
conducted to assess the effectiveness of the proposed 
deep learning framework for EEG-based deception 
detection.  The results of this study provide a 
comprehensive evaluation of the proposed EEG-based 
deception-detection framework across two benchmark 
datasets with distinct sensor configurations and subject 
populations. The analysis focuses on examining how 
effectively the three models FBC-EEGNet, 
InceptionTime-light, and their ensemble generalize 
under subject-independent conditions and capture 
deception-related neural signatures. To ensure fair 
comparison, all models were trained using the same 
preprocessing pipeline and evaluated using Accuracy, 
Sensitivity, and Specificity, which together offer a 
balanced view of classification performance. Statistical 

  

(a) (b) 

Fig. 4 Welch-based Power Spectral Density (PSD) estimates of (a) Skin Conductance Response (SCR) 

(b) Respiration Level (RLL) for innocent and guilty groups 
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analyses, including paired t-tests and ANOVA, were 
conducted to determine whether differences across 
models were statistically significant rather than 
incidental. In addition, visualization of spectral 
characteristics, Z-scored responses, and channel-wise 
mean estimates provides further insight into group 
differences between guilty and innocent subjects. The 
following subsections summarize model-wise 
performance, dataset-specific behavior, comparative 
strengths, and operational implications derived from 
the experimental findings. Fig. 4 a & b presents Welch-
based Power Spectral Density (PSD) estimates of Skin 
Conductance Response (SCR) and Respiration Level 
(RLL) for innocent and guilty groups. Both modalities 
exhibit dominant energy below 0.5 Hz, reflecting slow 
physiological oscillations. SCR shows peaks near 0 Hz 
and ~1 Hz, while RLL decays sharply beyond 0.2 Hz, 
consistent with respiration rhythms. Nearly complete 
datasets were retained (SCR: 38/39 guilty, 39/40 
innocent; RLL: 39/39 guilty, 40/40 innocent), ensuring 
robust results. Band-wise analysis indicates subtle but 
measurable differences across the Ultra-Low, Low, and 
Respiratory ranges, suggesting the discriminative 
potential of these physiological markers for 
distinguishing between group conditions. Fig. 5.  
illustrates Z-scored skin conductance (left) and 
respiration (right) responses for innocent and guilty 
groups across single (Repetition 1) and aggregated 
(Repetitions 1–4) trials. Skin conductance shows a 
consistent post-stimulus decline with clear group 
separation, indicating stronger discriminative potential. 
Respiration exhibits oscillatory fluctuations with largely 
overlapping patterns, though localized differences are 
captured by Cohen’s d. The results suggest that skin 
conductance provides more reliable group 
differentiation compared to respiration across repeated 

trials. Table 1.  summarizes the numerical values of the 
mean Z-scored ROI responses along with their SEM 
across eight physiological channels for both guilty and 
innocent subjects. The table highlights the direction 
and magnitude of group differences for each channel, 
allowing quantitative comparison beyond the visual 
trends. Among SCR channels, SCR3 and SCR4 show 
the largest absolute differences in mean values, 
indicating that these channels exhibit the most distinct 
physiological responses between groups. In contrast, 
SCR1 and SCR2 display relatively small mean 
differences, suggesting more subtle variations. For 
respiration channels, the mean values for both groups 
remain close to zero, reflecting minimal deviation from 
baseline. However, opposite polarity in RLL1 and RLL3 
suggests channel-specific modulation rather than a 
uniform respiratory pattern across subjects. The SEM 
values indicate moderate variability across 
participants, with slightly higher dispersion observed in 
SCR4 and the respiration channels. Overall, the table 
provides a precise numerical basis for identifying which 
channels contribute most strongly to group separation 
and which show limited discriminative potential. 

 

Table 1. Channel-wise Group Means ± SEM (ROI) 
for Guilty and Innocent Subjects 

Channel Guilty                 
(Mean ± SEM) 

Innocent            
(Mean ± SEM) 

SCR1 0.0064 ± 0.0125 -0.0093 ± 0.0171 

SCR2 0.0020 ± 0.0064 0.0002 ± 0.0101 

SCR3 0.0028 ± 0.0067 -0.0162 ± 0.0089 

SCR4 -0.0284 ± 0.0124 -0.0029 ± 0.0053 

RLL1 -0.0163 ± 0.0150 0.0045 ± 0.0137 

RLL2 -0.0041 ± 0.0157 -0.0198 ± 0.0143 

RLL3 0.0131 ± 0.0148 -0.0024 ± 0.0150 

RLL4 -0.0008 ± 0.0142 -0.0055 ± 0.0144 

 
Fig. 5.  Z-scored skin conductance (left) and respiration (right) responses for innocent and guilty groups 
across single (Repetition 1) and aggregated (Repetitions 1–4) trials. 
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Fig. 6. presents the channel-wise group means (±SEM) 
for guilty and innocent participants across four Skin 
Conductance Response (SCR) channels (SCR1–
SCR4) and four Respiration Level (RLL1–RLL4) 
channels. The plot visualizes the normalized mean 
activity (Z-scored ROI) for each physiological channel, 
enabling comparison of group-level differences. In the 
SCR domain, the guilty group shows elevated mean 
responses in SCR1 and SCR3, whereas the innocent 
group exhibits higher activity in SCR2 and reduced 
suppression in SCR4. These patterns suggest that 
SCR channels are more sensitive to deception-related 
changes, with SCR3 and SCR4 showing the largest 
polarity differences between groups. Error bars (SEM) 
indicate variability across subjects, with SCR4 
displaying notably higher variance in the guilty group, 
reflecting heterogeneity in physiological responses 
during deceptive trials. In contrast, respiration channels 
(RLL1–RLL4) exhibit smaller group differences and 
greater overlap between guilty and innocent 
responses. RLL1 reveals a positive shift for innocents 
relative to guilty subjects, while RLL3 shows the 
opposite trend. RLL2 and RLL4 present minimal 
separation, suggesting weaker discriminative value. 
Overall, the figure highlights that SCR channels provide 
clearer group differentiation than respiration channels, 
offering more reliable cues for distinguishing 
physiological correlates of deception. These findings 
support the inclusion of SCR features as valuable 
complementary biomarkers within deception detection 
frameworks. Following Fig. 7. presents per-subject Z-
scored mean ROI values for guilty (a) and innocent (b) 
participants, showing variability in individual 
physiological responses. Guilty subjects display a 
wider spread with several pronounced negative shifts, 
suggesting stronger deviations during deceptive 
behavior. Innocent subjects exhibit more balanced 
values with fewer extremes, indicating relatively stable 
baseline-like patterns. The experimental evaluation 

was conducted on two publicly available datasets: the 
LieWaves dataset [11] (27 subjects, 5 channels: AF3, 
T7, Pz, T8, AF4) and the CIT dataset [22] (79 subjects, 
16 channels: Fp1, Fp2, F3, F4, C3, C4, Cz, P3, P4, Pz, 
O1, O2, T3 (T7), T4 (T8), T5 (P7), T6 (P8)). The results 
were compared across three models: FBC-EEGNet, 
InceptionTime-light, and their ensemble, using 
Accuracy, Sensitivity, and Specificity as performance 
metrics. 

A. FBC-EEGNET Performance 

On the 5-channel LieWaves dataset, FBC-EEGNet 
achieved an accuracy of 71.6%, a sensitivity of 
66.83%, and a specificity of 76.35%, demonstrating 
reliable performance with a moderate balance between 
guilty and innocent classifications. However, when 
evaluated on the larger CIT dataset with 16 channels, 
accuracy improved slightly to 70.8%, whereas 
sensitivity dropped markedly to 25% and specificity 
increased to 93.7%. This indicates that FBC-EEGNet 
became highly biased towards correctly identifying 
innocent subjects but struggled to detect guilty 
responses. The decline in sensitivity in the 16-channel 
CIT data arises because FBC-EEGNet relies on 
depthwise convolutions, which are designed for 
compact spatial patterns.  

B. Inceptiontime-Light Performance 

InceptionTime-light achieved an accuracy of 65.93%, 
sensitivity of 57.78%, and specificity of 74.07% with the 
5-channel configuration, showing relatively lower 
performance compared to FBC-EEGNet. However, on 
the 16-channel dataset, the model exhibited a 
significant performance boost, achieving 79.2% 
accuracy, 62.5% sensitivity, and 87.5% specificity. 
These results highlight the scalability of InceptionTime-
light, as it was able to exploit the richer information from 
additional EEG channels to deliver both high accuracy 
and a balanced trade-off between sensitivity and 
specificity. The model’s multi-scale temporal kernels 

 
Fig. 6. Channel-wise Group Means ± SEM (ROI) 
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appear to capture subtle variations in deception-related 
neural dynamics more effectively when broader spatial 
information is available. This also indicates that 
InceptionTime-light is particularly suited for datasets 
with diverse cortical coverage, where temporal patterns 
interact with spatial features more prominently. 
C. Ensemble Model (FBC-EEGNET + Inceptiontime-
Light) 
The ensemble model performed sub-optimally on the 
5-channel dataset, with an accuracy of 61.11%, 
sensitivity of 46.67%, and specificity of 75.56%, 
indicating that fusion was less effective when input 

information was limited. On the 16-channel dataset, 
however, the ensemble achieved 70.8% accuracy, 
62.5% sensitivity, and 78.6% specificity. While 
accuracy remained similar to standalone FBC-
EEGNet, sensitivity improved substantially compared 
to FBC-EEGNet alone, though with a trade-off in 
specificity. This suggests that ensemble fusion helped 
stabilize guilty classification performance by leveraging 
the complementary strengths of both models. The 
inconsistent gains from ensemble fusion can be 
attributed to correlated prediction errors between the  

Table 2. Comparative analysis of performance metrics for FBC-EEGNet, InceptionTimeLight and 
Ensemble Model 

Model 
No of 

Subjects 
No of 

Channels 
Accuracy Sensitivity Specificity 

FBC-EEGNET 
27 5 71.6 66.83 76.35 

79 16 70.8 25 93.7 

InceptionTime-light 
27 5 65.93 57.78 74.07 

79 16 79.2 62.5 87.5 

Ensemble Model   (FBC-
EEGNet+ InceptionTime-light) 

27 5 61.11 46.67 75.56 

79 16 70.8 62.5 75 

 

 
(a) 

 
(b) 

Fig. 7. Z-Scored Mean ROI (a) Guilty Participant and (b) Innocent Participant 
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two networks; when both FBC-EEGNet and 
InceptionTime-light misclassified the same noisy or 
weakly expressed guilty trials, soft voting averaged 
these errors instead of correcting them. Such error 
overlap reduces the diversity required for ensemble 
methods to be effective. The improvement observed 
with the 16-channel dataset further implies that 
ensemble strategies benefit more from richer spatial 
information. Overall, these findings highlight that 
ensemble performance is highly dependent on channel 
density, feature diversity, and the independence of 
model predictions. 
D. Comparative Insights  
This section describes a comparative analysis of 
different models with two datasets. Lightweight deep 
learning models showed distinct strengths in deception 
detection, with FBC-EEGNet excelling in specificity and 
InceptionTime-light delivering the most balanced and 
accurate performance. The ensemble model provided 
an intermediate solution, outperforming traditional 
ERP- and CNN-based approaches in robustness and 
generalization. Table 2. and Fig. 8. describes 
Comparative analysis of performance metrics for FBC-
EEGNet, InceptionTimeLight, and Ensemble Model.  

A paired t-test conducted on the CIT dataset 
revealed that InceptionTime-light’s accuracy was 
significantly higher than that of FBC-EEGNet (t(78) = 
4.12, p < 0.001). One-way ANOVA on the 5-channel 
LieWaves dataset showed a significant effect of model 
choice on accuracy (F(2,26) = 6.47, p < 0.01). These 
analyses confirm that observed differences are 
statistically meaningful rather than random variation. 
These metric trade-offs have important operational 
implications. High specificity reduces false accusations 

against innocent individuals, which is crucial in forensic 
contexts, while high sensitivity ensures that deceptive 
individuals are not overlooked. Therefore, selecting the 
optimal model depends heavily on whether minimizing 
false positives or false negatives is more critical for 
deployment. Compared to traditional ERP-P300 or 
CNN baselines, the proposed lightweight models 
demonstrated superior performance and 
generalization. 
E. Key Insights and Implications 
a) InceptionTime-Light excels with higher channel 

data, making it ideal for systems with rich EEG 
configurations. 

b) FBC-EEGNet is robust at detecting innocent 
individuals but fails to generalize to guilty 
classification in complex datasets. 

c) The ensemble model provides a balanced 
approach, especially valuable in real-world 
deception detection, where false negatives (guilty 
classified as innocent) must be minimized. 

These results indicate that, for practical deployment, a 
hybrid strategy incorporating InceptionTime-Light for 
initial detection and ensemble fusion for final decision-
making would yield a more reliable deception detection 
framework. Misclassification analysis revealed that 
guilty trials with weak frontal-theta engagement were 
often labeled as innocent, likely due to low SNR. 
Conversely, innocent trials contaminated by motion or 
transient high-frequency bursts were sometimes 
misclassified as guilty. Fig. 9. presents the 
performance metrics of the proposed framework, 
showing accuracy (a), sensitivity (b), and specificity (c) 
across different model configurations and datasets. 
The plots highlight how  

 
Fig. 8. Comparative Analysis of Accuracy, Sensitivity and Specificity for Proposed Framework 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
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each model varies in classification behavior, with 
notable differences in detection capability depending 
on channel density and architectural design. 
 
IV. Discussion 

This study aims to provide a deeper understanding of 
how lightweight temporal deep learning architectures 
interpret deception-related EEG activity and how 
effectively they can generalize across datasets with 
different channel configurations. The results indicate 
that deceptive responses are better represented 
through distributed spectral–temporal patterns rather 
than isolated event-related components, supporting 
recent neurophysiological evidence that deception 
engages multi-stage cognitive processes such as 
conflict monitoring and recognition responses [7]. 
These dynamics unfold over time, making temporal 
feature extractors particularly suitable for identifying 
guilty trials. A clear differentiation was observed in how 
the models captured these neural characteristics. 
InceptionTime-light showed the strongest performance 
on the CIT dataset, suggesting that its multi-scale 
temporal kernels effectively represent the 
heterogeneous structure of deception-related EEG 
signals. In contrast, FBC-EEGNet consistently 
produced higher specificity values, which is useful in 
applications where minimizing false positives is 
essential. Although the ensemble fusion integrated the 
complementary strengths of both models, its 
performance remained limited by correlated prediction 
errors. This highlights the need for more diverse feature 
representations or hybrid temporal–spatial 
architectures to improve ensemble consistency. 
Comparison with prior deception detection studies 
further supports the relevance of temporal modeling. 

Traditional ERP-based methods relying primarily on 
P300 amplitude often struggle with inter-individual 
variability and limited generalization [5].  
Similarly, earlier CNN-based approaches reported 
moderate accuracy and sensitivity due to their focus on 
spatial filtering rather than temporal progression [8]. 
The current findings extend these observations by 
demonstrating that compact temporal models can 
generalize more effectively across different paradigms 
when provided with sufficiently rich EEG inputs, 
aligning with emerging evidence on the advantages of 
temporal deep learning for EEG analysis [14]. Despite 
these strengths, several limitations must be 
acknowledged. The reduced performance on the 5-
channel LieWaves dataset indicates that limited spatial 
coverage constrains the model’s ability to learn 
distributed deception-related patterns. The use of 
multi-level DWT in the feature extraction pipeline adds 
computational cost, potentially limiting real-time 
deployment.  

Additionally, differences between the two datasets 
in paradigm structure, sample size, and sensor 
configuration restrict cross-paradigm generalizability. 
Misclassification patterns further reveal sensitivity to 
low-amplitude guilty responses and residual artifacts, 
indicating the need for more robust preprocessing, 
noise-aware architectures, or adaptive thresholding 
mechanisms. Overall, the study contributes to the 
growing understanding that deception-related EEG 
activity is fundamentally temporal and distributed, 
rather than solely ERP-driven. The demonstrated 
performance of lightweight temporal deep learning 
models shows promise for practical deception 
detection systems, especially in scenarios where 
sensor limitations or deployment constraints exist. 
 

 

 
 
 

 
 
 

Table 3 and Error! Reference source not found.. 
illustrate the comparative analysis of performance 
metrics with the existing approach used for EEG 
deception detection. The findings of this study indicate 
that lightweight deep learning architectures can 
achieve strong and balanced performance in EEG-
based deception detection. InceptionTime-light 
obtained an accuracy of 79.2% on the CIT dataset, 
which is slightly higher than EEG-ITNet (78%) [22] and 

EEGNet (78%) [13], and clearly above EEG-Inception 
(75%) [23] and the combined EEGNet & Inception 
CNNs (70%) [11]. This improvement suggests that 
models designed for efficiency and fast convergence 
can rival, or even surpass, more complex frameworks. 
A notable observation is that FBC-EEGNet tended to 
maximize specificity, whereas InceptionTime-light 
provided a better trade-off between sensitivity and 
specificity, making it more suitable as a standalone 
model. The ensemble model offered additional stability, 

Table 3. Comparative analysis of performance metrics with existing approach 

Reference Model Accuracy 

[22] EEG-ITNet (Inception CNN) 78% 

[23] EEG-Inception (InceptionTime variant) 75% 

[13] EEGNet (baseline) 78% 

[11] EEGNet & Inception CNNs 70% 

This Study EEGNet, InceptionTime-light 79.20% 
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particularly in guilty classification, but did not 
consistently outperform InceptionTime-light in overall 
accuracy. Accuracy, sensitivity, and specificity were 
emphasized because each addresses a different 
forensic requirement. Sensitivity reflects the ability to 
correctly identify guilty individuals, specificity measures 
the correct identification of innocents, and accuracy 
provides an overall performance summary. Using these 
metrics together enables a balanced and transparent 
evaluation. Cross-dataset variability was noticeable, 
with performance dropping on the 5-channel dataset. 
Confidence intervals provide further insight: on the CIT 
dataset, InceptionTime-light achieved 79.2% ± 3.1%, 
whereas FBC-EEGNet yielded 70.8% ± 4.5%. These 
findings suggest dataset-specific dependencies and 
highlight the need for domain adaptation strategies to 
improve cross-paradigm robustness. At the same time, 
several limitations should be recognized. The models 
performed less effectively on the 5-channel LieWaves 

dataset, suggesting that access to a richer set of EEG 
channels is important for reliable classification. 
Furthermore, while the use of DWT and FFT enhanced 
feature representation, these preprocessing steps may 
restrict seamless deployment in real-time systems. 
Cross-dataset variability also remains a challenge, as 
the models were not tested extensively on unseen 
experimental paradigms. Even so, the results show 
clear potential: lightweight architectures not only 
outperform many ERP-P300 and CNN-based 
baselines but also provide a scalable direction for 
practical applications in forensic and security contexts. 
Future work should address real-time optimization and 
explore advanced methods, such as graph neural 
networks and transformers, to further improve 
robustness and generalization. Future work should 
explore integrating explainable AI techniques to 
enhance interpretability, refining hybrid temporal–
spatial architectures for improved robustness, and 

  
(a) (b) 

 
(c) 

Fig. 9. Performance Metrics of proposed framework (a) Accuracy, (b) Sensitivity and (c) Specificity 
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validating the proposed framework on larger, 
heterogeneous EEG datasets to support broader real-
world applicability. Further research may also 
investigate domain-adaptation strategies to reduce 
cross-paradigm variability and assess the feasibility of 
deploying these models in portable, low-channel 
systems for field-level deception screening. 

 

V. Conclusion 

This study aims to classify subjects as guilty or 
innocent in a Concealed Information Test using EEG 
signals and lightweight temporal deep learning models. 
The experimental results showed that InceptionTime-
light achieved the highest accuracy of 79.2%, 
outperforming FBC-EEGNet (71.6% on LieWaves and 
70.8% on CIT) and the ensemble model (61.11% and 
70.8%). An additional finding was that FBC-EEGNet 
consistently produced higher specificity values 
(76.35%–93.7%), indicating stronger performance in 
reducing false positives, while InceptionTime-light 
offered a more balanced trade-off between sensitivity 
and specificity. Although designed to combine the 
strengths of both networks, the ensemble model did not 
yield significant improvements and exhibited reduced 
sensitivity in several cases. Overall, the findings 
highlight the suitability of InceptionTime-light for 
subject-independent EEG-based deception detection, 
especially when balanced evaluation metrics are 
required. Future research should explore incorporating 
explainable AI methods to enhance interpretability, 
refining hybrid architectures to improve robustness, 
and validating the framework on larger, more diverse, 
and multi-session EEG datasets to support broader 
real-world deployment. 
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