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Abstract Respiratory diseases such as asthma, chronic obstructive pulmonary disease, and pneumonia 
remain among the leading causes of death globally. Traditional diagnostic approaches, including 
auscultation, rely heavily on the subjective expertise of medical practitioners and the quality of the 
instruments used. Recent advancements in artificial intelligence offer promising alternatives for automated 
lung sound analysis. However, audio is an unstructured data format that must be converted into a suitable 
format for AI algorithms. Another significant challenge lies in the imbalanced class distribution within 
available datasets, which can adversely affect classification performance and model reliability. This study 
applied several comprehensive preprocessing techniques, including random undersampling to address 
data imbalance, resampling audio at 4000 Hz for standardization, and standardizing audio duration to 2.7 
seconds for consistency. Feature extraction was then performed using the Mel Spectrogram method, 
converting audio signals into image representations to serve as input for classification algorithms based 
on deep learning architectures.  To determine optimal performance characteristics, various Convolutional 
Neural Network (CNN) architectures were systematically evaluated, including LeNet-5, AlexNet, VGG-16, 
VGG-19, ResNet-50, and ResNet-152. VGG-16 achieved the highest classification accuracy of the tested 
models at 75.5%, demonstrating superior performance in respiratory sound classification tasks. This study 
demonstrates the potential of AI-based lung sound classification systems as a complementary diagnostic 
tool for healthcare professionals and the general public in supporting early identification of respiratory 
abnormalities and diseases. The findings suggest that automated lung sound analysis could enhance 
diagnostic accessibility and provide more valuable support for clinical decision-making in respiratory 
healthcare applications. 

Keywords Lung Sound; Feature Extraction; Au; Audio Classification; Convolutional Neural Network. 

I. Introduction 

Lung sound classification is crucial in medical 
diagnostics, particularly in identifying respiratory 
conditions such as asthma, chronic obstructive 
pulmonary disease (COPD), and pneumonia [1], [2]. 
These conditions are often characterized by abnormal 
lung sounds, such as crackles and wheezes, which can 
be detected through auscultation [3], [4]. However, 
manual interpretation of lung sounds requires 
specialized expertise and is often prone to inter-
observer variability, which may lead to inconsistent 
diagnostic outcomes [5], [6]. These challenges have 
motivated the development of automated lung sound 
classification systems to support healthcare 
professionals and the general public in the early 

detection of respiratory diseases. Recent 
advancements in artificial intelligence (AI) have 
provided promising alternative solutions for audio 
analysis, including lung sound classification [7], [8]. 
Classifying lung sounds using AI generally follows the 
same pipeline as in other audio-based tasks, beginning 
with extracting raw audio into a structured format that 
machine learning algorithms can process. Commonly 
used feature extraction methods include spectral 
features, such as Mel-Frequency Cepstral Coefficients 
(MFCC), and time–frequency representations, such as 
spectrograms [9], [10], [11]. MFCC is favored for its 
computational efficiency and robustness to moderate 
noise levels [11], [12]. However, due to  dimensionality 
reduction, MFCC may discard critical information, 
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leading to lower classification performance than more 
expressive representations like Mel-Spectrograms. 
Mel-spectrograms offer a richer representation by 
capturing key characteristics of audio signals, including 
relevant frequency patterns and intensity variations, 
making them particularly useful for medical 
classification tasks [13], [14], [15]. MFCC-based 
feature extraction typically yields numerical feature 
vectors that can be fed into traditional machine learning 
algorithms such as Support Vector Machine (SVM), 
Naive Bayes, K-Nearest Neighbors (KNN), and 
Random Forest [16]. In contrast, feature extraction 
methods based on Gammatonegrams or spectrograms 
produce image-like representations that are not directly 
compatible with traditional algorithms but are well-
suited for processing with deep learning–based 
classifiers, particularly Convolutional Neural Networks 
(CNNs) [7], [9], [13]. To address this, numerous CNN 
architectures have been developed and optimized for 
image-based inputs, including VGG-16, ResNet-50, 
MobileNet, and GoogLeNet. 

Respiratory sound analysis research for pulmonary 
disease diagnosis commonly utilizes the ICBHI 2017 
dataset (International Conference on Biomedical and 
Health Informatics), which consists of four classes. 
Studies employing Gammatonegram-based feature 
extraction on the ICBHI 2017 dataset, combined with 
two Convolutional Neural Network (CNN) 
architectures, ResNet-50 and VGG-16, reported 
classification accuracies of 60.80% and 67.97%, 
respectively [17], [18]. Using the same classification 
algorithms with Mel Spectrogram feature extraction 
methods, reported accuracies ranged between 
60.80%–62.29% and 62.50%–67.97% [17], [18]. Other 
studies using GoogLeNet and MobileNet architectures 
with Mel Spectrogram input achieved accuracies of 
63.69% [18] and 74% [19], respectively. In addition to 
the CNN architectures mentioned above, models such 
as LeNet-5, AlexNet, VGG-19, and ResNet-152 have 
been successfully applied to various audio analysis 
tasks. For instance, VGG-19 combined with Mel 
Spectrogram has demonstrated effective performance 
in the classification of COVID-19 based on cough 
sounds [20]. Similarly, LeNet-5 has shown strong 
performance in medical and mechanical audio 
classification tasks, such as breast cancer diagnosis 
and faulty motor sound detection [21], [22]. Moreover, 
AlexNet has been effectively utilized in cardiac 
anomaly detection, outperforming several other 
classification methods [23]. 

Prior studies on lung sound classification using the 
ICBHI 2017 dataset have demonstrated classification 
accuracies ranging from 60% to 74%, indicating a clear 
opportunity for further exploration to improve diagnostic 
performance. Building upon this gap, the primary 
objective of this study is to systematically evaluate and 

compare the performance of six different CNN 
architectures, LeNet-5, AlexNet, VGG-16, VGG-19, 
ResNet-50, and ResNet-152, in combination with Mel 
Spectrogram-based feature extraction, to identify the 
most effective model for automated lung sound 
classification. The novelty of this research lies in its 
integrated methodological enhancements, including: 

1. Class balancing through random undersampling 
to address data imbalance. 

2. Audio preprocessing involving resampling at 4000 
Hz and segment duration standardization (2.7 
seconds), and 

3. Hyperparameter variation, such as epochs, 
learning rate, optimizer choice, batch size, and 
input shape tuning, is used to optimize model 
training. 

Unlike previous studies that focus on a single 
architecture or a limited set of configurations, this 
research comprehensively compares architectures 
under controlled preprocessing conditions. The 
findings are expected to contribute to higher diagnostic 
accuracy and greater reproducibility, and to improve 
objectivity in computer-aided respiratory disease 
detection systems, ultimately supporting both clinical 
decision-making and public health applications. 

 

II. Method 

A. Dataset 

In this study, the respiratory sound data were obtained 
from the ICBHI 2017 dataset, one of the largest publicly 
available collections of respiratory audio recordings. 
The dataset contains a total of 5.5 hours of audio, 
comprising 6,898 respiratory cycles, including 3,642 
normal cycles, 1,864 cycles with crackles, 886 cycles 
with wheezes, and 506 cycles containing a combination 
of crackles and wheezes [24]. Each audio file in the 
dataset is accompanied by metadata that provides 
detailed information about the recording conditions, 
including the equipment used, the acquisition mode, 
and the chest location of the recording. The equipment 
used to acquire lung sound recordings include an AKG 
C417L Microphone, a 3M Littmann Classic II SE 
Stethoscope, a 3M Littmann 3200 Electronic 
Stethoscope, and a Welch Allyn Meditron Master Elite 
Electronic Stethoscope. The recordings were obtained 
using two acquisition modes: sequential (single-
channel) and simultaneous (multi-channel). The chest 
locations at which the sounds were recorded include 
the trachea and the anterior left, anterior right, posterior 
left, posterior right, lateral left, and lateral right 
positions. Additional patient information, such as age, 
sex, and whether the subject is an adult or child, is also 
provided in the dataset. 

B. Method 
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This study employs a quantitative approach to data 
analysis and applies convolutional neural networks 
(CNNs) to classify respiratory sounds. Fig. 1. presents 
the overall workflow of the proposed methodology. The 
first step is data collection. The second step involves 
audio resampling. The audio samples in the ICBHI 
2017 dataset were recorded at various sampling rates, 
ranging from 4,000 Hz to 44,100 Hz. This study focuses 
on four classes: crackle, wheeze, normal, and both 
(crackle and wheeze). Crackle sounds typically occur 
within the 100–700 Hz frequency range [25], [26], while 
wheeze sounds fall within 100–1000 Hz [27], [26]. 
Since the relevant signal frequencies are generally 
below 2000 Hz, resampling the audio to 4,000 Hz is 
sufficient to preserve important signal characteristics 
[26]. For example, if the original sampling rate fs

(old) is 
44,100 Hz and the target sample rate fs(new) is 4,000 Hz, 
the resampling process can be mathematically defined 
in Eq. (1)  [28]  as: 

𝑦[𝑚] = 𝑥(
𝑓𝑠
(𝑜𝑙𝑑)

𝑓𝑠
(𝑛𝑒𝑤)𝑚) (1) 

Substituting the values gives y[m] = x(11.025 ∙ m) 
where the ratio fs(old) divided by fs(new) indicates that each 
new sample in the resampled signal y[m] corresponds 
to a position 11.025 samples apart in the original signal 
x[n]. Since this ratio is non-integer, interpolation is 
applied to estimate values of x at fractional indices, 
resulting in a new signal with a sampling rate of 4000 
Hz while preserving the original signal’s duration and 
content. The third preprocessing step is segmentation, 
in which each resampled audio file is segmented into 
individual respiratory cycles labeled as crackle, 
wheeze, normal, or both, based on expert annotations. 
However, the duration of respiratory cycles varies 

significantly, ranging from 0.2 to 16 seconds, with an 
average of approximately 2.7 seconds. A twofold 
strategy is employed to standardize input duration: 
cycles longer than 2.7 seconds are truncated to retain 
only the first 2.7 seconds. In contrast, shorter cycles 
are padded using sample-level zero-padding [28]. The 
final preprocessing step is encoding, where class 
names are converted into corresponding numerical 
labels. 

The next phase is feature extraction, aimed at 
transforming audio data into structured input suitable 
for classification algorithms. This study utilizes the Mel-
Spectrogram, which converts audio signals into the 
time–frequency domain by mapping frequency to the 
Mel scale, a perceptual scale of pitches more aligned 
with human auditory perception [13], [29], [30]. To 
obtain the frequency domain representation, each 
windowed segment of the audio signal x[n] is 
transformed using the Fast Fourier Transform (FFT), 
which is defined in Eq. (2) [32].  

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑤[𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑛−1
𝑛=0  (2) 

where w[n] denotes the window function, N is the 
window length, and X[k] represents the complex 
spectrum for frequency bin k. The power spectrum is 
computed as Eq. (3)  [32]. 

𝑃[𝑘] = |𝑋[𝑘]|2 (3) 

Next, the Mel Filter banks are applied to map the linear 
frequency scale of the FFT output to the Mel Scale. 
Each Mel filter Hm[k] is a triangular filter defined over 
the frequency range of interest, and the filter bank 
energy for the mth Mel band is calculated as Eq. (4)  
[32]. 

𝐸𝑚 = ∑ 𝑃[𝑘] ∙ 𝐻𝑚[𝑘]
𝑁−1
𝑛=0  (4) 

where Hm[k] emphasizes components within the Mel-
scaled frequency range. The resulting set of Em values 
forms the Mel-Spectrogram, providing a perceptually 
meaningful time-frequency representation that 
enhances the performance of audio recognition and 
classification tasks [31], [32]. The final step is 
classification. The extracted features are divided into 
training, validation, and testing sets in this stage. A 
convolutional neural network (CNN) is employed to 

develop the classification model. CNNs are a class of 
deep learning models that excel at recognizing visual 
patterns, such as images, including spectrogram 
representations. Their advantages include automatic 
feature extraction, parameter efficiency, and high 
accuracy in both classification and detection tasks. Fig. 
2 illustrates the basic architecture of a CNN, which 
consists of several layers, including Convolutional 

 
Fig. 1. Research flow consists of 4 phases, Data collection, preprocessing, feature extraction, and 
classification. 
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(Conv), Rectified Linear Unit (ReLU), Pooling, and Fully 
Connected (FC) layers [33], [34]. Mathematically, a 
convolutional layer that produces the k-th output 
feature map can be written as Eq. (5) [40].   

𝑦𝑖,𝑗
(𝑘)

= ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛 ∙ 𝑊𝑚,𝑛
(𝑘)

+ 𝑏(𝑘)𝑛−1
𝑛=0

𝑚−1
𝑚=0   (5) 

Where X is the input feature map, W(k)∈ Rm x n is the 

k-th convolutional kernel, and b(k) its bias. A nonlinear 
activation (here ReLU) is applied elementwise in Eq. 
(6) [13]: 

𝜎(𝑧) = max⁡(0, 𝑧) (6) 

For pooling, we denote a pooling region P (e.g., 2x2) 
and stride s; the common operations are max-pooling 
shown in Eq. (7) [13]. 

𝑂(𝑝, 𝑞) = ⁡𝑚𝑎𝑥0<𝑖<𝑘ℎ,0<𝑗<𝑘𝑤𝐼𝑐(𝑝 ∙ 𝑠 + 𝑖, 𝑞 ∙ 𝑠 + 𝑗)  (7) 

Or average pooling in Eq. (8) [13]. 

𝑂(𝑝, 𝑞) =
1

𝑘ℎ∙𝑘𝑤
∑ ∑ 𝐼(𝑝 ∙ 𝑠 + 𝑖, 𝑞 ∙ 𝑠 + 𝑗)

𝑘𝑤−1
𝑗=0

𝑘ℎ−1
𝑖=0   (8) 

where I is the input feature map and kh x kw is the pooling 
window size. The fully connected layer that follows the 
flattened feature maps is written in vector form, as 
shown at Eq. (9) [13]. 

𝑦𝑖 = 𝑓(∑ 𝑤𝑖,𝑗𝑥𝑗 + 𝑏𝑖
𝑛
𝑗=1 ) (9) 

where X is the input vector to the FC layer, W is the 
weight matrix, b is the bias vector, and f is the activation 
function. Finally, for the classification network output 
using the SoftMax function, where K is the number of 
classes and Zi is the logit (the output of the previous 
layer) for the ith class. The SoftMax function shown in 
Eq. (10) [13] and as for the loss function during training, 
this study uses Categorical Cross-Entropy shown in 
Eq, (11) [39] where N is the number of classes, yi is the 
true label, and y^I is the predicted probability for class 
i, which is suitable for multi-class classification 
problems. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

  (10) 

𝐿 = −∑ 𝑦𝑖log⁡(𝑦̂𝑖)
𝑁
𝑖=1  (11) 

In recent developments, researchers have 
progressively introduced modifications to the basic 

CNN architecture to enhance classification 
performance. Several well-known CNN variants have 
emerged from such efforts, including LeNet-5, AlexNet, 
VGG-16, VGG-19, ResNet-50, and ResNet-152 [33], 
[34]. 

1. LeNet-5 

LeNet-5 is a simple and lightweight architecture 
suitable for classification with a small dataset, such as 
digit recognition. The architecture illustration can be 
seen in Fig. 3.(a). LeNet-5 is typically for a greyscale 
image with a size of 32x32 with a convolutional layer 
kernel size 5x5 which can be defined as Eq. (12) [21]. 

𝑦𝑖,𝑗 = ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛𝑊𝑚,𝑛 + 𝑏4
𝑛=0

4
𝑚=0  (12) 

Average pooling uses a kernel of 2x2 and a stride of 
2. As expressed in Eq. (13) [21]. 

𝑂(𝑝, 𝑞) =
1

4
∑ ∑ 𝐼(2𝑝 + 𝑖, 2𝑞 + 𝑗)1

𝑗=0
1
𝑖=0  (13) 

A fully connected layer follows flattened feature maps, 
as shown at Eq. (9). For the output layer in this 
research, using SoftMax with four classes, as shown in 
Eq. (14) [19]. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗4

𝑗=1

 (14) 

2. Alexnet 

Introduce ReLu activation, as shown in Eq. (6), that 
mitigates the vanishing gradient problem, enabling 
faster convergence and improved training efficiency for 
large-scale datasets. The architecture illustration can 
be seen in Fig. 3.(b), the default input shape for 
AlexNet is 227 x 227 with three color channels or RGB, 
for a convolutional layer with multiple channels, 
mathematically can be defined as Eq. (15) [13]. 

𝑦𝑖,𝑗,𝑘 = ∑ ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛,𝑐 ∙ 𝑊𝑚,𝑛,𝑐,𝑘 + 𝑏𝑘
𝑛−1
𝑛=0

𝑚−1
𝑚=0

𝐶𝑖𝑛
𝑐=1  (15) 

For the pooling layer, this architecture uses Max-
pooling with a kernel of 3 x 3, a stride of 2, and each 
channel is expressed in Eq. (16) [13]. 

𝑦𝑖,𝑗 = 𝑚𝑎𝑥(𝑚,𝑛)∈𝑝𝑜𝑜𝑙 ∙ 𝑋2𝑖+𝑚,2𝑗+𝑛 (16) 

Using a flattened fully connected layer input, as shown 
at Eq. (9) and SoftMax in Eq. (14) as the output layer. 

3. VGG-16 and VGG-19 

VGG-16 and VGG-19 employ uniform 3 x 3 
convolutional kernels throughout the network; this 
consistency facilitates transfer learning across diverse 
image classification tasks. The VGG-16 architecture 
illustration can be seen in Fig. 3. (c) and VGG-19 with 
increased depth that enhances representational 
capacity for complex visual patterns, with illustration in 
Fig. 3. (d). With the difference only on depth, the VGG-
16 and VGG-19 have the same default input size, 
which is a 224 x 224 RGB picture, a convolutional layer 
with multiple channels as shown in Eq. (15), a max-
pooling layer with kernel 2 x 2 and stride 2 shown in Eq. 
(16). 

 
Fig. 2. The Illustration of basic CNN architecture 
used for classification and detection task. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3. Model architecture (a) LeNet-5, (b) Alexnet, (c) VGG-16, (d) VGG-19, (e) ResNet-50, (f) ResNet-152 
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Fully connected layer that follows flattening before 
input as shown in Eq. (9) and using ReLu shown at Eq. 
(6) for first two FC layers and SoftMax as output layer 
shown in Eq. (14). 

4. ResNet-50 and ResNet-152 

ResNet architecture brought new innovation that 
introduce residual learning with skip connections, 
where residual connection ensures stable gradient 
flow. The identity term in the residual formulation 

Table 1. Summary of CNN architecture variants with differences in depth and composition. 

Architecture Input 
Shape 

Layers Advantage Ref 

LeNet-5 32×32×1 Conv → AvgPool → Conv → AvgPool 
→ FC → FC → SoftMax 

Simple and lightweight; 
suitable for small datasets 
such as digit recognition 
and grayscale images. 

[33], [34] 

AlexNet 227×227×3 Conv → ReLU → MaxPool → Conv → 
ReLU → MaxPool → Conv ×3 → 
MaxPool → FC ×2 → SoftMax 

Introduced ReLU 
activation and dropout, 
which are robust for more 
complex and larger-scale 
image data. 

[33], [34] 

VGG-16 224×224×3 Conv ×2 → MaxPool → Conv ×2 → 
MaxPool → Conv ×3 → MaxPool → 
Conv ×3 → MaxPool → Conv ×3 → 
MaxPool → FC ×3 → SoftMax 

It uses a consistent 
convolutional structure 
and is easily transferable 
to various image 
classification tasks. 

[33], [34] 

VGG-19 224×224×3 Conv ×2 → MaxPool → Conv ×2 → 
MaxPool → Conv ×4 → MaxPool → 
Conv ×4 → MaxPool → Conv ×4 → 
MaxPool → FC ×3 → SoftMax 

Deeper than VGG-16, 
capable of capturing more 
complex visual patterns 
and high-level features. 

[33], [34] 

ResNet-50 224×224×3 Conv1 () → MaxPool → (Conv ×3 + 
skip) ×3 → (Conv ×3 + skip) ×4 → 
(Conv ×3 + skip) ×6 → (Conv ×3 + skip) 
×3 → AvgPool → FC → SoftMax 

Stable and efficient with 
residual learning; 
achieves high accuracy 
while minimizing 
overfitting. 

[33], [34] 

ResNet-152 224×224×3 Conv1 → MaxPool → (Conv ×3 + skip) 
×3 → (Conv ×3 + skip) ×8 → (Conv ×3 
+ skip) ×36 → (Conv ×3 + skip) ×3 → 
AvgPool → FC → SoftMax 

A very deep architecture; 
well-suited for large-scale 
image classification with 
high precision. 

[33], [34] 

 

  
(a) (b) 

  
(c) (d) 

Fig. 4. Illustration of each class from the audio processed to a Mel Spectrogram picture (a) Crackle, 
(b) Wheeze, (c) Normal, (d) Crackle & Wheeze 
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prevents gradient vanishing, achieving high accuracy 
with fewer parameters than VGG networks while 
enabling training of deep architectures. A ResNet block 
learn a residual mapping mathematically shown at Eq. 
(17) [18]. 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (17) 

where X is input (shortcut connection), F (x, {Wi}) is the 
residual function (series of conv, BN, ReLU), and the 
addition (+x) is called a skip connection. For each 
residual block formula is in Eq. (18) [18]. 

𝐹(𝑥) = 𝑊3 ∗ 𝑓(𝑊2 ∗ 𝑓(𝑊1 ∗ 𝑥)) (18) 

Then the output can be defined as Eq. (19) [18]. 

𝑦 = 𝑓(𝐹(𝑥) +𝑊𝑠 ∗ 𝑥) (19) 

where Ws is a shortcut projection (1 x 1 conv) if the input 
and output dimensions differ. The architecture of both 
ResNet-50 and ResNet-152 begins with an input image 
of default size 224 x 224 RGB picture, which passes 
through an initial 7 x 7 convolutional layer with a stride 
of 2, followed by a 3 x 3 max pooling operation to 
reduce the spatial dimensions. The key difference 
between the architecture of ResNet-50 and ResNet-
152 is in the number of residual blocks in the four main 
residual stages. In ResNet-50, the four stages contain 
3, 4, 6, and 3 residual blocks, respectively. Each 
residual block consists of three convolutional layers 1 x 
1, 3 x 3, and 1 x 1 filters, along with a shortcut (skip) 
connection that directly adds the input of the block to 
its output. With the ResNet-50 architecture, the 
illustration can be seen in Fig. 3.(e). While ResNet-152 
is a deeper version that contains 3, 8, 36, 3 residual 
blocks across four stages, respectively. The ResNet-
152 architecture illustration can be seen in Fig. 3.(f). 
The structural differences, specifically in the 
composition and number of layers among these 
architectures, are summarized in Table 1. For model 
training, 90% of the data was used for training and 10% 
for validation. The construction of the models in this 
study involved experimenting with various 
hyperparameter settings, as detailed in Table 2. Each 
model was trained using input shapes compatible with 
their respective architecture; however, in this study, the 
input shape was modified to 256 × 256 × 3, deviating 
from the standard default values. This experimentation 
with non-default input shapes has not been widely 
explored in prior state-of-the-art research. Once the 
best-performing model was identified during training 
and validation, it was evaluated on the remaining 10% 
of the dataset for testing. The classification 
performance of each model was assessed using 
accuracy as the primary evaluation metric [13], [17], 
[18]. These parameters are essential for evaluating 
each model, and hyperparameters such as batch size, 
number of epochs, and learning rate have a crucial role 
in the gradient-based learning process. The training 
process aims to minimize the loss function J(θ) by 
optimizing the model parameter θ through gradient-

based learning. The parameter update rule follows the 
gradient descent principle in Eq. (20) [26]. 

 

Table 2. The Experimented Parameter to assess 
each model in this study. 

Parameter Value 

Batch Size 64, 128, 256 

Epoch 25, 35, 50, 100 

Learning Rate 0.01, 0.001, 0.0001 

Optimizer Adam, SGD 

Input Shape 32, 224, 227, 256 

 
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛻𝜃𝐽(𝜃𝑡) (20) 

where η denotes the learning rate, controlling the step 
size of each update, and ∇θJ(θt) represents the 

gradient loss function with respect to the model 
parameters at iteration t. The batch size (B) influences 
the stability and variance of the gradient estimation. In 
mini-batch gradient descent, the update rule becomes 
as shown in Eq. (21) [26]. 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

𝐵
∑ 𝛻𝜃𝐽𝑖(𝜃𝑡)
𝐵
𝑖=1  (21) 

where Ji(θt) denotes the loss of ith training example 
within a batch. Smaller batch sizes introduce higher 
gradient variance, which may improve generalization 
but slow convergence, while larger batches produce 
smoother updates. The number of echoes (E) 
determines the number of complete passes the model 
makes over the training dataset. Each epoch consists 
of N/B iterations, where N is the total number of training 
samples. Increasing E allows the model to refine its 
parameter estimates, though excessive epochs can 
lead to overfitting. Through systematic adjustment of 
these hyperparameters, learning rate, batch size, and 
epochs, the training process balances convergence 
speed, stability, and generalization, ultimately 
improving classification performance. 

III. Result 

The result of the preprocessing stage is a balanced 
dataset, achieved through the implementation of the 
Random Undersampling (RUS) method [35], [36], where 
each class, e.g., Crackle, Wheezes, Normal, and both 
(crackle and wheeze), now contains 500 data. The 
preprocessing workflow includes several steps: audio 
resampling to standardize signal amplitude, random 
undersampling to balance the class distribution, and 
sample padding to ensure uniform audio duration across 
all instances [28], [37]. Encoding is then applied to 
convert categorical labels into a numerical form for 
further processing [38], [39].  The second stage involves 
feature extraction using the Mel-Spectrogram method. 
Parameters configured for the Mel-Spectrogram include 
frame length and the number of Mel filter banks, which 
are adjusted based on the input shape to capture the key 
acoustic characteristics of respiratory sounds effectively.   
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An example of the Mel-Spectrogram resulting from the 
feature extraction process is presented in Fig. 4. After 
feature extraction, the dataset was divided into three 
subsets: 90% for training, 10% for validation, and 10% 
for testing. The classification model development in this 
study employed six different CNN-based architectures. 
For each architecture, combinations of five 
hyperparameters were varied using predefined values 
(as detailed in Table 2, resulting in 16 distinct 
classification models per architecture. The performance 
metrics of each model are presented in Table 3. The 
best classification accuracy achieved among the models 
was 75.50%, obtained using 35 epochs, while the 
remaining parameters followed the configurations 
shown in Table 3. The corresponding default values are 
listed in the Default Parameter column. In addition, the 

highest accuracies achieved by individual models using 
specific parameter adjustments were 73.00% for VGG-
19 with 100 epochs, 58.50% for LeNet-5 with a batch 
size of 256, 71.00% for AlexNet with 100 epochs, 
50.00% for ResNet-50 with a learning rate of 0.001, and 
57.00% for ResNet-152 using the same parameter 
learning rate. These findings indicate that variations in 
key training parameters can significantly affect model 
performance across different CNN architectures. 

 

IV. Discussion 

Based on the results presented in Table 3, several 
conclusions can be drawn regarding the CNN 
architectures and parameter configurations that 
contributed to the best classification performance. 

Table 3. The comparative performance results of the tested parameters and models. 

Parameter Default Parameter Architecture F1 Score Accuracy (%) 

Batch Size 64 Learning Rate= 0.0001, 
Epoch=50, 
Optimizer=Adam, 
Shape=227 

VGG-16 71,24 71,50 

VGG-19 70.00 70,00 

LeNet-5 53,71 54,50 

AlexNet 58,19 58,50 

ResNet-50 0,00 0,00 

ResNet-152 0,00 0,00 

128 Learning Rate= 0.0001, 
Epoch=50, 
Optimizer=Adam, 
Shape=227 

VGG-16 72,97 73,50 

VGG-19 66,93 66,50 

LeNet-5 53,00 53,00 

AlexNet 60,29 61,50 

ResNet-50 46,37 49,00 

ResNet-152 35,68 40,50 

256 Learning Rate= 0.0001, 
Epoch=50, 
Optimizer=Adam, 
Shape=227 

VGG-16 71,08 72,00 

VGG-19 69,22 69,00 

LeNet-5 57,88 58,50 

AlexNet 51,80 53,50 

ResNet-50 20,94 31,00 

ResNet-152 10,00 25,00 

Epoch 25 Learning Rate= 0.0001, 
Batch Size=128, 
Optimizer=Adam, 
Shape=227 

VGG-16 62,74 62,50 
VGG-19 65,55 66,50 
LeNet-5 53,05 54,00 
AlexNet 48,69 51,00 
ResNet-50 10,04 25,00 
ResNet-152 10,00 25,00 

 35 Learning Rate= 0.0001, 
Batch Size=128, 
Optimizer=Adam, 
Shape=227 

VGG-16 75,31 75,50 

  VGG-19 36,31 40,00 
  LeNet-5 50,91 51,50 
  AlexNet 60,70 60,50 
  ResNet-50 21,77 29,00 
  ResNet-152 19,26 29,50 

 50 Learning Rate= 0.0001, 
Batch Size=128, 
Optimizer=Adam, 
Shape=227 

VGG-16 72,97 73,50 
  VGG-19 66,93 66,50 
  LeNet-5 53,00 51,00 
  AlexNet 60,29 61,50 
  ResNet-50 46,37 49,00 
   ResNet-152 35,68 40,50 
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 Parameter Default Parameter Architecture F1 Score Accuracy (%) 

 

100 Learning Rate= 0.0001, 
Batch Size=128, 
Optimizer=Adam, 
Shape=227 

VGG-16 69,05 69,00 
VGG-19 72,36 73,00 
LeNet-5 53,93 55,00 
AlexNet 70,59 71,00 
ResNet-50 40,73 44,00 
ResNet-152 33,74 39,00 

Learning 
Rate 

0,01 Batch Size=128, 
Epoch=50, 
Optimizer=Adam, 
Shape=227 

VGG-16 10,00 25,00 

VGG-19 10,00 25,00 

LeNet-5 10,00 25,00 

AlexNet 10,00 25,00 

ResNet-50 46,13 48,50 

ResNet-152 43,12 47,00 

0,001 Batch Size=128, 
Epoch=50, 
Optimizer=Adam, 
Shape=227 

VGG-16 10,00 25,00 

VGG-19 10,00 25,00 

LeNet-5 50,75 56,25 

AlexNet 10,00 25,00 

ResNet-50 48,60 50,00 

ResNet-152 56,96 57,00 

0,0001 Batch Size=128, 
Epoch=50, 
Optimizer=Adam, 
Shape=227 

VGG-16 72,97 73,50 

VGG-19 66,93 66,50 

LeNet-5 53,00 53,00 

AlexNet 60,29 61,50 

ResNet-50 46,37 49,00 

ResNet-152 35,68 40,50 

Optimizer SGD Batch Size=128, 
Epoch=50, Learning 
Rate=0.0001, Shape=227 

VGG-16 34,30 41,50 

VGG-19 67,24 67,50 

LeNet-5 23,00 30,00 

AlexNet 37,48 43,50 

ResNet-50 35,15 38,50 

ResNet-152 43,03 44,50 

Adam Batch Size=128, 
Epoch=50, Learning 
Rate=0.0001, Shape=227 

VGG-16 72,97 73,50 

VGG-19 66,93 66,50 

LeNet-5 53,00 53,00 

AlexNet 60,29 61,50 

ResNet-50 46,37 49,00 

ResNet-152 35,68 40,50 

Shape 32 Batch Size=128, 
Epoch=50, Learning 
Rate=0.0001, 
Optimizer=Adam 

VGG-16 63,94 63,50 
VGG-19 59,97 59,50 
LeNet-5 55,03 56,00 
AlexNet 56,26 57,50 

   ResNet-50 42,69 43,50 
   ResNet-152 43,03 44,50 

 224 Batch Size=128, 
Epoch=50, Learning 
Rate=0.0001, 
Optimizer=Adam 

VGG-16 70,15 70,00 
  VGG-19 66,20 66,00 
  LeNet-5 56,80 57,00 
  AlexNet 58,29 58,00 
  ResNet-50 38,85 42,50 
  ResNet-152 41,11 43,50 

 227 Batch Size=128, 
Epoch=50, Learning 
Rate=0.0001, 
Optimizer=Adam 

VGG-16 72,97 73,50 
  VGG-19 66,93 66,50 
  LeNet-5 53,00 53,00 
  AlexNet 60,29 61,50 
  ResNet-50 46,37 49,00 
  ResNet-152 35,68 40,50 
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Fig. 5.(a) illustrates the average performance of the six 

CNN architectures used in this study. Among them, 
VGG-16 demonstrated the highest overall accuracy, 

surpassing LeNet, AlexNet, and ResNet. The superior 
performance of VGG-16 may be attributed to its more 
complex architecture relative to LeNet, particularly its 

  
(a) (b) 

Fig. 6. Average Performance model and input Dimension (a) Models and (b) Dimensions 
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256 Batch Size=128, 
Epoch=50, Learning 
Rate=0.0001, 
Optimizer=Adam 

VGG-16 74,58 75,00 

VGG-19 66,20 66,00 

LeNet-5 56,89 57,00 

AlexNet 60,42 60,50 

ResNet-50 47,79 49,50 

ResNet-152 32,40 39,50 
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(c) (d) 

Fig. 5. Average Performance Key Parameters (a) Batch size, (b) Epoch, (c) Learning Rate, and (d) 
Optimizers 
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use of more convolutional layers and ReLU activations, 
which enable it to capture more detailed and abstract 
features. VGG-16 also has a more consistent, deeper 
architecture than AlexNet, as all its convolutional layers 
use filters of the same size, enhancing its ability to 
generalize across image classification tasks. Although 
ResNet is theoretically superior in terms of efficiency, 
depth, and training stability due to its residual learning 
framework, in the context of this study, ResNet failed to 
perform well when applied to spectrogram image data. 
This result suggests that architectural complexity does 
not necessarily guarantee better classification 
performance. A similar pattern was observed between 
VGG-16 and VGG-19, where, despite VGG-19 being 
architecturally deeper, VGG-16 consistently achieved 
better average performance. 

Fig. 5(b) shows the impact of input dimensions (input 
shape) on classification performance across CNN 
architectures. LeNet, which was originally designed for 
an input shape of 32×32×1, showed improved 
performance when tested with larger input dimensions. 
The influence of input shape on classification accuracy 
was also evident across other architectures. Although 
the average performance generally improved with larger 
input shapes, the highest accuracy for each architecture 
was achieved with an input shape of 227×227×3. This 
may indicate that optimal performance is not solely 
dependent on input size but also on the alignment of 
other hyperparameter values, such as learning rate, 
batch size, and training epochs. Fig. 6 presents the 
average classification performance across variations in 
several key parameters, including batch size, epoch 
count, learning rate, and optimizer type. The average 
results indicate that the best classification performance 
was achieved with a batch size of 128, 100 epochs, a 

learning rate of 0.0001, and the Adam optimizer. 
However, it is essential to note that the best overall 
classification accuracy, as shown in Table 3, was 
obtained using a different set of parameter values. We 
retrained the models using the configuration above to 
validate the influence of these averaged optimal 
parameter settings on each CNN architecture. The 
performance results of these models are presented in 
the Accuracy (%) column of Table 5. Compared with the 
maximum accuracies previously achieved by each 
architecture (shown in the Max Accuracy (%) column), it 
becomes evident that the models trained using the 
averaged optimal parameters yielded lower 
performance across all architectures. 

 

Table 4. Paired t-Test Results for Model 
Performance under Different Parameter Settings 

Parameters P Value Significant 

Batch 
Size 

 

64 - 128 0.1789 No 

64 - 256 0.1995 No 

128 - 
256 

0.1976 No 

Epoch 25 - 35 0.9563 No 

25 - 50 0.0934 No 

25 - 100 0.0161 Yes 

Learning 
Rate 

0,01 0.2197 No 

0,001 0.0438 Yes 

0,0001 0.1794 No 

Optimizer SGD - 
Adam 

0.0704 No 

Shape 32 – 224 0.1616 No 

32 – 227 0.1786 No 

32 - 256 0.1238 No 

Model performance was compared numerically using 
the accuracy values obtained from each experimental 
setting. To validate whether the observed differences 
across parameters were statistically significant, a paired 
t-test was applied for each parameter, and the results 
are presented in Table 4. 

 

Table 5. Performance evaluation of tested models 
using their best parameter settings. 

Parameters Model Acc.  
(%) 

Max 
Acc. 
(%) 

Batch Size=128, 
Epoch=100, 
Optimizer=Adam, 
Learning  
Rate=0.0001, 
Shape = 256 

LeNet-5 55.50 58.50 

AlexNet 64.50 71.00 

VGG-16 71.00 75.50 

VGG-19 66.50 73.00 

ResNet-50 53.00 50.00 

ResNet-152 46.00 57.00 

 

Fig. 7. Confusion Matrix of our best model for 
Lung sound Classification  
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The results presented in Table 5 indicate that using the 
best average values of the parameters shown in Fig. 6 
did not improve model performance. These findings 
suggest that selecting optimal parameters for enhancing 
model performance cannot rely solely on average-based 
values; instead, a more refined approach is required. 
One such approach is hyperparameter tuning, which 
systematically searches for the optimal combination of 
parameters to improve model performance [40]. Further 
examination utilizing the confusion matrix, as depicted in 
Fig. 7, offers a detailed perspective on the model's 
sorting conduct across diverse respiratory sound 
categories. The VGG-16 architecture displayed robust 
capability in recognizing crackle and regular categories, 
with 43 and 42 correct predictions, respectively. 
However, the model showed a relatively lower accuracy 
in detecting crackles and wheezes, where several 
samples were misclassified as wheezes. This 
misclassification may occur due to data loss during the 
audio-frequency processing and to the acoustic 
similarity between wheezing and combined crackle–
wheeze sounds, which share overlapping frequency 
patterns. Additionally, the wheezes class presented 
moderate confusion with crackle and wheezes, 
suggesting that the model has difficulty distinguishing 
between isolated and co-occurring respiratory events. 
These results indicate that, although the model 
effectively recognizes distinct sound patterns, it still 
faces challenges when dealing with mixed or complex 
respiratory sounds that exhibit overlapping spectral 
features. 

 

Table 6. The performance comparison of our 
research model against state-of-the-art 
benchmarks. 

Year & 
Ref 

Methods 
Accuracy 

(%) 
Feature 

Extraction 
Architecture 

2022 [17] Gammatone
gram 

ResNet-50 60.80 

2021 [17] Gammatone
gram 

VGG-16 67.97 

2022 [18] Gammatone
gram 

ResNet-50 62.29 

2021 [18] Gammatone
gram 

VGG-16 62.50 

2021 [18] Gammatone
gram 

GoogLeNet 63.69 

2025 [19] Mel 
Spectrogram 

MobileNet 74 

Our 
research 

Mel 
Spectrogram 

VGG-16 75.5 

To evaluate the effectiveness of the techniques and 
parameter configurations proposed in this study, we 
compared the best-performing model developed in this 
research with those from state-of-the-art studies that 

utilized the same dataset. The results of this comparison 
are presented in Table 6. A comparative study by [18], 
which employed Gammatonegram feature extraction 
with ResNet-50, VGG-16, and GoogleLeNet, reported 
accuracies of 62.29%, 62.50%, and 63.69%, 
respectively. Another study by [17] also utilized 
Gammatonegram features and achieved a higher 
accuracy of 67.97% using VGG-16 by tuning several 
parameter settings. In contrast, research conducted by 
[19] using Mel-spectrogram features achieved an 
accuracy of 74% with MobileNet. However, this study did 
not apply any preprocessing techniques and was trained 
on an imbalanced dataset. Our research addresses 
these limitations and fills this gap by incorporating 
improved preprocessing, balanced data handling, and 
optimized architectural configurations to achieve better 
overall performance. 

The performance comparison clearly demonstrates 
that the combination of techniques used in this study 
successfully improved the accuracy of lung sound 
classification models relative to previous research. 
Although the classification models developed in this 
study outperformed those in previous state-of-the-art 
research, their performance remains below the 90%–
95% accuracy threshold, indicating considerable room 
for further methodological improvement. In addition to 
performance differences, several similarities with 
previous research were also observed. Consistent with 
previous studies, our findings show that the results from 
Mel-Spectrogram feature extraction are superior 
compared to those state-of-the-art studies using 
Gammatone feature extraction, and that increasing the 
network depth does not necessarily lead to better 
performance on this dataset. 

This study used a single audio resampling frequency 
and a fixed segmentation duration, leaving the impact of 
varying these parameters on classification performance 
unexplored. Furthermore, the data balancing technique 
employed in this research relied solely on Random 
Undersampling (RUS), a relatively simple method. Thus, 
future research may benefit from exploring alternative 
data balancing techniques, potentially leading to further 
improvements in model performance. Further 
optimization techniques such as data augmentation and 
hyperparameter tuning could boost the model’s 
performance. While the suggested model demonstrates 
promising accuracy in classifying sound, its 
implementation in an actual clinical environment may 
face encounter several challenges, including variability 
in real-world audio conditions, limited dataset diversity, 
computational limitations, and matters of clarity, 
regulatory approval, and workflow integration. 

 

V. Conclusion 

The results of this study demonstrate that the 
combination of preprocessing techniques, audio 
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transformations, and feature extraction methods, 
classification algorithms, and parameter selection 
successfully produced a lung sound classification model 
with an accuracy of 75.5%, utilizing a CNN with the 
VGG-16 architecture. The optimal model was achieved 
with the following configuration: Learning Rate = 0.0001, 
Batch Size = 128, Optimizer = Adam, Input Shape = 
227×227×3, and Epochs = 35. Although the achieved 
performance falls within the "moderate" accuracy range, 
further improvement is required to reach the "excellent" 
range of 90%–95%. Therefore, future research should 
aim to identify more effective techniques to enhance 
model performance in lung sound classification. 
Potential directions for future work include optimizing the 
model using hyperparameter tuning through various 
strategies such as Grid Search, Random Search, 
Bayesian Optimization, or Hyperband. This optimization 
can be further supported by exploring variations in the 
preprocessing stage, such as different frequency ranges 
and audio segmentation durations, to better capture 
relevant acoustic features. 
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