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Abstract Respiratory diseases such as asthma, chronic obstructive pulmonary disease, and pneumonia
remain among the leading causes of death globally. Traditional diagnostic approaches, including
auscultation, rely heavily on the subjective expertise of medical practitioners and the quality of the
instruments used. Recent advancements in artificial intelligence offer promising alternatives for automated
lung sound analysis. However, audio is an unstructured data format that must be converted into a suitable
format for Al algorithms. Another significant challenge lies in the imbalanced class distribution within
available datasets, which can adversely affect classification performance and model reliability. This study
applied several comprehensive preprocessing techniques, including random undersampling to address
data imbalance, resampling audio at 4000 Hz for standardization, and standardizing audio duration to 2.7
seconds for consistency. Feature extraction was then performed using the Mel Spectrogram method,
converting audio signals into image representations to serve as input for classification algorithms based
on deep learning architectures. To determine optimal performance characteristics, various Convolutional
Neural Network (CNN) architectures were systematically evaluated, including LeNet-5, AlexNet, VGG-16,
VGG-19, ResNet-50, and ResNet-152. VGG-16 achieved the highest classification accuracy of the tested
models at 75.5%, demonstrating superior performance in respiratory sound classification tasks. This study
demonstrates the potential of Al-based lung sound classification systems as a complementary diagnostic
tool for healthcare professionals and the general public in supporting early identification of respiratory
abnormalities and diseases. The findings suggest that automated lung sound analysis could enhance
diagnostic accessibility and provide more valuable support for clinical decision-making in respiratory
healthcare applications.

Keywords Lung Sound; Feature Extraction; Au; Audio Classification; Convolutional Neural Network.

. Introduction

Lung sound classification
diagnostics, particularly in identifying respiratory
conditions such as asthma, chronic obstructive
pulmonary disease (COPD), and pneumonia [1], [2].
These conditions are often characterized by abnormal
lung sounds, such as crackles and wheezes, which can
be detected through auscultation [3], [4]. However,
manual interpretation of Ilung sounds requires
specialized expertise and is often prone to inter-
observer variability, which may lead to inconsistent
diagnostic outcomes [5], [6]. These challenges have
motivated the development of automated lung sound
classification systems to support healthcare
professionals and the general public in the early

is crucial in medical

detection  of respiratory  diseases. Recent
advancements in artificial intelligence (Al) have
provided promising alternative solutions for audio
analysis, including lung sound classification [7], [8].
Classifying lung sounds using Al generally follows the
same pipeline as in other audio-based tasks, beginning
with extracting raw audio into a structured format that
machine learning algorithms can process. Commonly
used feature extraction methods include spectral
features, such as Mel-Frequency Cepstral Coefficients
(MFCC), and time—frequency representations, such as
spectrograms [9], [10], [11]. MFCC is favored for its
computational efficiency and robustness to moderate
noise levels [11], [12]. However, due to dimensionality
reduction, MFCC may discard critical information,
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leading to lower classification performance than more
expressive representations like Mel-Spectrograms.
Mel-spectrograms offer a richer representation by
capturing key characteristics of audio signals, including
relevant frequency patterns and intensity variations,
making them particularly useful for medical
classification tasks [13], [14], [15]. MFCC-based
feature extraction typically yields numerical feature
vectors that can be fed into traditional machine learning
algorithms such as Support Vector Machine (SVM),
Naive Bayes, K-Nearest Neighbors (KNN), and
Random Forest [16]. In contrast, feature extraction
methods based on Gammatonegrams or spectrograms
produce image-like representations that are not directly
compatible with traditional algorithms but are well-
suited for processing with deep learning—based
classifiers, particularly Convolutional Neural Networks
(CNNs) [71, [9], [13]. To address this, numerous CNN
architectures have been developed and optimized for
image-based inputs, including VGG-16, ResNet-50,
MobileNet, and GoogLeNet.

Respiratory sound analysis research for pulmonary
disease diagnosis commonly utilizes the ICBHI 2017
dataset (International Conference on Biomedical and
Health Informatics), which consists of four classes.
Studies employing Gammatonegram-based feature
extraction on the ICBHI 2017 dataset, combined with
two  Convolutional Neural Network  (CNN)
architectures, ResNet-50 and VGG-16, reported
classification accuracies of 60.80% and 67.97%,
respectively [17], [18]. Using the same classification
algorithms with Mel Spectrogram feature extraction
methods, reported accuracies ranged between
60.80%—62.29% and 62.50%—67.97% [17], [18]. Other
studies using GoogLeNet and MobileNet architectures
with Mel Spectrogram input achieved accuracies of
63.69% [18] and 74% [19], respectively. In addition to
the CNN architectures mentioned above, models such
as LeNet-5, AlexNet, VGG-19, and ResNet-152 have
been successfully applied to various audio analysis
tasks. For instance, VGG-19 combined with Mel
Spectrogram has demonstrated effective performance
in the classification of COVID-19 based on cough
sounds [20]. Similarly, LeNet-5 has shown strong
performance in medical and mechanical audio
classification tasks, such as breast cancer diagnosis
and faulty motor sound detection [21], [22]. Moreover,
AlexNet has been effectively utilized in cardiac
anomaly detection, outperforming several other
classification methods [23].

Prior studies on lung sound classification using the
ICBHI 2017 dataset have demonstrated classification
accuracies ranging from 60% to 74%, indicating a clear
opportunity for further exploration to improve diagnostic
performance. Building upon this gap, the primary
objective of this study is to systematically evaluate and

compare the performance of six different CNN
architectures, LeNet-5, AlexNet, VGG-16, VGG-19,
ResNet-50, and ResNet-152, in combination with Mel
Spectrogram-based feature extraction, to identify the
most effective model for automated lung sound
classification. The novelty of this research lies in its
integrated methodological enhancements, including:

1. Class balancing through random undersampling
to address data imbalance.

2. Audio preprocessing involving resampling at 4000
Hz and segment duration standardization (2.7
seconds), and

3. Hyperparameter variation, such as epochs,
learning rate, optimizer choice, batch size, and
input shape tuning, is used to optimize model
training.

Unlike previous studies that focus on a single
architecture or a limited set of configurations, this
research comprehensively compares architectures
under controlled preprocessing conditions. The
findings are expected to contribute to higher diagnostic
accuracy and greater reproducibility, and to improve
objectivity in computer-aided respiratory disease
detection systems, ultimately supporting both clinical
decision-making and public health applications.

II. Method
A. Dataset

In this study, the respiratory sound data were obtained
from the ICBHI 2017 dataset, one of the largest publicly
available collections of respiratory audio recordings.
The dataset contains a total of 5.5 hours of audio,
comprising 6,898 respiratory cycles, including 3,642
normal cycles, 1,864 cycles with crackles, 886 cycles
with wheezes, and 506 cycles containing a combination
of crackles and wheezes [24]. Each audio file in the
dataset is accompanied by metadata that provides
detailed information about the recording conditions,
including the equipment used, the acquisition mode,
and the chest location of the recording. The equipment
used to acquire lung sound recordings include an AKG
C417L Microphone, a 3M Littmann Classic Il SE
Stethoscope, a 3M Littmann 3200 Electronic
Stethoscope, and a Welch Allyn Meditron Master Elite
Electronic Stethoscope. The recordings were obtained
using two acquisition modes: sequential (single-
channel) and simultaneous (multi-channel). The chest
locations at which the sounds were recorded include
the trachea and the anterior left, anterior right, posterior
left, posterior right, lateral left, and lateral right
positions. Additional patient information, such as age,
sex, and whether the subject is an adult or child, is also
provided in the dataset.

B. Method
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This study employs a quantitative approach to data
analysis and applies convolutional neural networks
(CNNs) to classify respiratory sounds. Fig. 1. presents
the overall workflow of the proposed methodology. The
first step is data collection. The second step involves
audio resampling. The audio samples in the ICBHI
2017 dataset were recorded at various sampling rates,
ranging from 4,000 Hz to 44,100 Hz. This study focuses
on four classes: crackle, wheeze, normal, and both
(crackle and wheeze). Crackle sounds typically occur
within the 100-700 Hz frequency range [25], [26], while
wheeze sounds fall within 100-1000 Hz [27], [26].
Since the relevant signal frequencies are generally
below 2000 Hz, resampling the audio to 4,000 Hz is
sufficient to preserve important signal characteristics
[26]. For example, if the original sampling rate fs©% is
44,100 Hz and the target sample rate fs"™*") is 4,000 Hz,
the resampling process can be mathematically defined
in Eq. (1) [28] as:
(old)

ylm] = xCiamm) (1)

Substituting the values gives y[m] = x(11.025 - m)
where the ratio fs©9 divided by fs("*") indicates that each
new sample in the resampled signal y[m] corresponds
to a position 11.025 samples apart in the original signal
x[n]. Since this ratio is non-integer, interpolation is
applied to estimate values of x at fractional indices,
resulting in a new signal with a sampling rate of 4000
Hz while preserving the original signal’s duration and
content. The third preprocessing step is segmentation,
in which each resampled audio file is segmented into
individual respiratory cycles labeled as crackle,
wheeze, normal, or both, based on expert annotations.
However, the duration of respiratory cycles varies

The next phase is feature extraction, aimed at
transforming audio data into structured input suitable
for classification algorithms. This study utilizes the Mel-
Spectrogram, which converts audio signals into the
time—frequency domain by mapping frequency to the
Mel scale, a perceptual scale of pitches more aligned
with human auditory perception [13], [29], [30]. To
obtain the frequency domain representation, each
windowed segment of the audio signal x[n] is
transformed using the Fast Fourier Transform (FFT),
which is defined in Eq. (2) [32].

X[k] = Zpzsx[n]wln]e~/2mn/N 2)
where w/n] denotes the window function, N is the
window length, and XJk] represents the complex
spectrum for frequency bin k. The power spectrum is
computed as Eq. (3) [32].

P[k] = |X[k]|? &)
Next, the Mel Filter banks are applied to map the linear
frequency scale of the FFT output to the Mel Scale.
Each Mel filter Hm[k] is a triangular filter defined over
the frequency range of interest, and the filter bank
energy for the m Mel band is calculated as Eq. (4)
[32].

Ep = ¥n=o Plk] - Hn k] (4)
where Hm[k] emphasizes components within the Mel-
scaled frequency range. The resulting set of Emn values
forms the Mel-Spectrogram, providing a perceptually
meaningful  time-frequency representation that
enhances the performance of audio recognition and
classification tasks [31], [32]. The final step is
classification. The extracted features are divided into
training, validation, and testing sets in this stage. A
convolutional neural network (CNN) is employed to
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Fig. 1. Research flow consists of 4 phases, Data collection, preprocessing, feature extraction, and

classification.

significantly, ranging from 0.2 to 16 seconds, with an
average of approximately 2.7 seconds. A twofold
strategy is employed to standardize input duration:
cycles longer than 2.7 seconds are truncated to retain
only the first 2.7 seconds. In contrast, shorter cycles
are padded using sample-level zero-padding [28]. The
final preprocessing step is encoding, where class
names are converted into corresponding numerical
labels.

develop the classification model. CNNs are a class of
deep learning models that excel at recognizing visual
patterns, such as images, including spectrogram
representations. Their advantages include automatic
feature extraction, parameter efficiency, and high
accuracy in both classification and detection tasks. Fig.
2 illustrates the basic architecture of a CNN, which
consists of several layers, including Convolutional
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Fig. 2. The lllustration of basic CNN architecture
used for classification and detection task.

(Conv), Rectified Linear Unit (ReLU), Pooling, and Fully
Connected (FC) layers [33], [34]. Mathematically, a
convolutional layer that produces the k-th output
feature map can be written as Eq. (5) [40].
W = TS TR Kiem jon - Wi + b® (5)
Where X is the input feature map, W®e R™x" is the
k-th convolutional kernel, and b® its bias. A nonlinear
activation (here RelLU) is applied elementwise in Eq.
(6) [13]:
0(z) = max (0,z) (6)
For pooling, we denote a pooling region P (e.g., 2x2)
and stride s; the common operations are max-pooling
shown in Eq. (7) [13].

0(p, q) = Maxociciy0<j<k,lc@ S+1Lq s +)) (7)
Or average pooling in Eq. (8) [13].

1 wkp—1 k- . )
0. @) = (o iy 5% 1 s+iq-s+))  (8)

where | is the input feature map and knxkwis the pooling
window size. The fully connected layer that follows the
flattened feature maps is written in vector form, as
shown at Eq. (9) [13].

yi = ff=1wijx; + by) 9
where X is the input vector to the FC layer, W is the
weight matrix, bis the bias vector, and fis the activation
function. Finally, for the classification network output
using the SoftMax function, where K is the number of
classes and Z; is the logit (the output of the previous
layer) for the i class. The SoftMax function shown in
Eqg. (10) [13] and as for the loss function during training,
this study uses Categorical Cross-Entropy shown in
Eq, (11) [39] where N is the number of classes, yiis the
true label, and y* is the predicted probability for class

i, which is suitable for multi-class classification
problems.

eZi
Softmax(z;) = S 7 (10)
L=-YNY ylog ) (11)

In  recent developments, researchers have
progressively introduced modifications to the basic

CNN architecture to enhance classification
performance. Several well-known CNN variants have
emerged from such efforts, including LeNet-5, AlexNet,
VGG-16, VGG-19, ResNet-50, and ResNet-152 [33],
[34].

1. LeNet-5

LeNet-5 is a simple and lightweight architecture
suitable for classification with a small dataset, such as
digit recognition. The architecture illustration can be
seen in Fig. 3.(a). LeNet-5 is typically for a greyscale
image with a size of 32x32 with a convolutional layer
kernel size 5x5 which can be defined as Eq. (12) [21].

Yij = ‘r}n=0 Z%:O Xi+m,j+nWm,n +b (12)

Average pooling uses a kernel of 2x2 and a stride of
2. As expressed in Eq. (13) [21].

0(p,q) = Xk0Xj=0 120 +1,2q + ) (13)
A fully connected layer follows flattened feature maps,
as shown at Eq. (9). For the output layer in this
research, using SoftMax with four classes, as shown in
Eq. (14) [19].
eZi

Softmax(z;) = w (14)
2. Alexnet

Introduce Relu activation, as shown in Eq. (6), that
mitigates the vanishing gradient problem, enabling
faster convergence and improved training efficiency for
large-scale datasets. The architecture illustration can
be seen in Fig. 3.(b), the default input shape for
AlexNet is 227 x 227 with three color channels or RGB,
for a convolutional layer with multiple channels,
mathematically can be defined as Eq. (15) [13].

Vijk = Zfi"l =0 2n=o Xizm jrnc * Wmnck + i (15)
For the pooling layer, this architecture uses Max-
pooling with a kernel of 3 x 3, a stride of 2, and each
channel is expressed in Eq. (16) [13].

Yi,j = MAXm,n)epool 'X2i+m,2j+n (16)

Using a flattened fully connected layer input, as shown
at Eq. (9) and SoftMax in Eq. (14) as the output layer.

3. VGG-16 and VGG-19

VGG-16 and VGG-19 employ uniform 3 x 3
convolutional kernels throughout the network; this
consistency facilitates transfer learning across diverse
image classification tasks. The VGG-16 architecture
illustration can be seen in Fig. 3. (c) and VGG-19 with
increased depth that enhances representational
capacity for complex visual patterns, with illustration in
Fig. 3. (d). With the difference only on depth, the VGG-
16 and VGG-19 have the same default input size,
which is a 224 x 224 RGB picture, a convolutional layer
with multiple channels as shown in Eq. (15), a max-
pooling layer with kernel 2 x 2 and stride 2 shown in Eq.
(16).
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Fig. 3. Model architecture (a) LeNet-5, (b) Alexnet, (c) VGG-16, (d) VGG-19, (e) ResNet-50, (f) ResNet-152
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Table 1. Summary of CNN architecture variants with differences in depth and composition.

Architecture Input Layers Advantage Ref
Shape
LeNet-5 32x32x1 Conv — AvgPool — Conv — AvgPool Simple and lightweight; [33], [34]
— FC — FC — SoftMax suitable for small datasets
such as digit recognition
and grayscale images.
AlexNet 227x227x3 Conv — RelLU — MaxPool — Conv — Introduced RelLU [33], [34]
RelLU — MaxPool — Conv x3 — activation and dropout,
MaxPool — FC x2 — SoftMax which are robust for more
complex and larger-scale
image data.
VGG-16 224x224x3  Conv x2 — MaxPool — Conv x2 — It uses a consistent [33], [34]
MaxPool — Conv x3 — MaxPool — convolutional structure
Conv x3 — MaxPool — Conv x3 — and is easily transferable
MaxPool — FC x3 — SoftMax to various image
classification tasks.
VGG-19 224x224x3 Conv x2 — MaxPool — Conv x2 — Deeper than VGG-16, [33], [34]
MaxPool — Conv x4 — MaxPool — capable of capturing more
Conv x4 — MaxPool — Conv x4 — complex visual patterns
MaxPool — FC x3 — SoftMax and high-level features.
ResNet-50  224x224x3 Conv1 () — MaxPool — (Conv x3 + Stable and efficient with [33], [34]
skip) x3 — (Conv x3 + skip) x4 — residual learning;
(Conv x3 + skip) x6 — (Conv x3 + skip) achieves high accuracy
x3 — AvgPool — FC — SoftMax while minimizing
overfitting.
ResNet-152 224x224x3 Conv1 — MaxPool — (Conv x3 + skip) A very deep architecture;  [33], [34]

x3 — (Conv x3 + skip) x8 — (Conv x3
+ skip) x36 — (Conv x3 + skip) x3 —
AvgPool —» FC — SoftMax

well-suited for large-scale
image classification with
high precision.

(a)

(c)

(b)

(d)

Fig. 4. lllustration of each class from the audio processed to a Mel Spectrogram picture (a) Crackle,
(b) Wheeze, (c) Normal, (d) Crackle & Wheeze

4. ResNet-50 and ResNet-152

ResNet architecture brought new innovation that
introduce residual learning with skip connections,
where residual connection ensures stable gradient
flow. The identity term in the residual formulation

Fully connected layer that follows flattening before
input as shown in Eq. (9) and using ReLu shown at Eq.
(6) for first two FC layers and SoftMax as output layer
shown in Eq. (14).
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prevents gradient vanishing, achieving high accuracy
with fewer parameters than VGG networks while
enabling training of deep architectures. A ResNet block
learn a residual mapping mathematically shown at Eq.
(17) [18].

y=F{W}) +x (17)
where X is input (shortcut connection), F (x, {W}}) is the
residual function (series of conv, BN, ReLU), and the
addition (+x) is called a skip connection. For each
residual block formula is in Eq. (18) [18].

F(x) = W3 x f(Wz * f(W; % x)) (18)
Then the output can be defined as Eq. (19) [18].
y=f(F&x)+Ws*x) (19)

where Wsis a shortcut projection (1 x 1 conv) if the input
and output dimensions differ. The architecture of both
ResNet-50 and ResNet-152 begins with an input image
of default size 224 x 224 RGB picture, which passes
through an initial 7 x 7 convolutional layer with a stride
of 2, followed by a 3 x 3 max pooling operation to
reduce the spatial dimensions. The key difference
between the architecture of ResNet-50 and ResNet-
152 is in the number of residual blocks in the four main
residual stages. In ResNet-50, the four stages contain
3, 4, 6, and 3 residual blocks, respectively. Each
residual block consists of three convolutional layers 1 x
1, 3 x 3, and 1 x 1 filters, along with a shortcut (skip)
connection that directly adds the input of the block to
its output. With the ResNet-50 architecture, the
illustration can be seen in Fig. 3.(e). While ResNet-152
is a deeper version that contains 3, 8, 36, 3 residual
blocks across four stages, respectively. The ResNet-
152 architecture illustration can be seen in Fig. 3.(f).
The structural differences, specifically in the
composition and number of layers among these
architectures, are summarized in Table 1. For model
training, 90% of the data was used for training and 10%
for validation. The construction of the models in this
study involved experimenting  with  various
hyperparameter settings, as detailed in Table 2. Each
model was trained using input shapes compatible with
their respective architecture; however, in this study, the
input shape was modified to 256 x 256 x 3, deviating
from the standard default values. This experimentation
with non-default input shapes has not been widely
explored in prior state-of-the-art research. Once the
best-performing model was identified during training
and validation, it was evaluated on the remaining 10%
of the dataset for testing. The classification
performance of each model was assessed using
accuracy as the primary evaluation metric [13], [17],
[18]. These parameters are essential for evaluating
each model, and hyperparameters such as batch size,
number of epochs, and learning rate have a crucial role
in the gradient-based learning process. The training
process aims to minimize the loss function J(6) by
optimizing the model parameter 6 through gradient-

based learning. The parameter update rule follows the
gradient descent principle in Eq. (20) [26].

Table 2. The Experimented Parameter to assess
each model in this study.

Parameter Value
Batch Size 64, 128, 256
Epoch 25, 35, 50, 100
Learning Rate 0.01, 0.001, 0.0001
Optimizer Adam, SGD
Input Shape 32, 224, 227, 256
O¢r1 =0 —1VeJ(6r) (20)

where n denotes the learning rate, controlling the step
size of each update, and IBJ(6f) represents the
gradient loss function with respect to the model
parameters at iteration t. The batch size (B) influences
the stability and variance of the gradient estimation. In
mini-batch gradient descent, the update rule becomes
as shown in Eq. (21) [26].

Opr1 =0, — g ?:1 Voli(6t) (21)
where Ji(6;) denotes the loss of i training example
within a batch. Smaller batch sizes introduce higher
gradient variance, which may improve generalization
but slow convergence, while larger batches produce
smoother updates. The number of echoes (E)
determines the number of complete passes the model
makes over the training dataset. Each epoch consists
of N/B iterations, where N is the total number of training
samples. Increasing E allows the model to refine its
parameter estimates, though excessive epochs can
lead to overfitting. Through systematic adjustment of
these hyperparameters, learning rate, batch size, and
epochs, the training process balances convergence
speed, stability, and generalization, ultimately
improving classification performance.

lll. Result

The result of the preprocessing stage is a balanced
dataset, achieved through the implementation of the
Random Undersampling (RUS) method [35], [36], where
each class, e.g., Crackle, Wheezes, Normal, and both
(crackle and wheeze), now contains 500 data. The
preprocessing workflow includes several steps: audio
resampling to standardize signal amplitude, random
undersampling to balance the class distribution, and
sample padding to ensure uniform audio duration across
all instances [28], [37]. Encoding is then applied to
convert categorical labels into a numerical form for
further processing [38], [39]. The second stage involves
feature extraction using the Mel-Spectrogram method.
Parameters configured for the Mel-Spectrogram include
frame length and the number of Mel filter banks, which
are adjusted based on the input shape to capture the key
acoustic characteristics of respiratory sounds effectively.
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An example of the Mel-Spectrogram resulting from the
feature extraction process is presented in Fig. 4. After
feature extraction, the dataset was divided into three
subsets: 90% for training, 10% for validation, and 10%
for testing. The classification model development in this
study employed six different CNN-based architectures.
For each architecture, combinations of five
hyperparameters were varied using predefined values
(as detailed in Table 2, resulting in 16 distinct
classification models per architecture. The performance
metrics of each model are presented in Table 3. The
best classification accuracy achieved among the models
was 75.50%, obtained using 35 epochs, while the
remaining parameters followed the configurations
shown in Table 3. The corresponding default values are
listed in the Default Parameter column. In addition, the

highest accuracies achieved by individual models using
specific parameter adjustments were 73.00% for VGG-
19 with 100 epochs, 58.50% for LeNet-5 with a batch
size of 256, 71.00% for AlexNet with 100 epochs,
50.00% for ResNet-50 with a learning rate of 0.001, and
57.00% for ResNet-152 using the same parameter
learning rate. These findings indicate that variations in
key training parameters can significantly affect model
performance across different CNN architectures.

IV. Discussion

Based on the results presented in Table 3, several
conclusions can be drawn regarding the CNN
architectures and parameter configurations that
contributed to the best classification performance.

Table 3. The comparative performance results of the tested parameters and models.

Parameter Default Parameter Architecture F1 Score  Accuracy (%)
Batch Size 64 Learning Rate= 0.0001, VGG-16 71,24 71,50
Epoch=50, VGG-19 70.00 70,00
Optimizer=Adam, LeNet-5 53,71 54,50
Shape=227 AlexNet 58,19 58,50
ResNet-50 0,00 0,00
ResNet-152 0,00 0,00
128 Learning Rate= 0.0001, VGG-16 72,97 73,50
Epoch=50, VGG-19 66,93 66,50
Optimizer=Adam, LeNet-5 53,00 53,00
Shape=227 AlexNet 60,29 61,50
ResNet-50 46,37 49,00
ResNet-152 35,68 40,50
256 Learning Rate= 0.0001, VGG-16 71,08 72,00
Epoch=50, VGG-19 69,22 69,00
Optimizer=Adam, LeNet-5 57,88 58,50
Shape=227 AlexNet 51,80 53,50
ResNet-50 20,94 31,00
ResNet-152 10,00 25,00
Epoch 25 Learning Rate= 0.0001, VGG-16 62,74 62,50
Batch Size=128, VGG-19 65,55 66,50
Optimizer=Adam, LeNet-5 53,05 54,00
Shape=227 AlexNet 48,69 51,00
ResNet-50 10,04 25,00
ResNet-152 10,00 25,00
35 Learning Rate= 0.0001, VGG-16 75,31 75,50
Batch Size=128, VGG-19 36,31 40,00
Optimizer=Adam, LeNet-5 50,91 51,50
Shape=227 AlexNet 60,70 60,50
ResNet-50 21,77 29,00
ResNet-152 19,26 29,50
50 Learning Rate= 0.0001, VGG-16 72,97 73,50
Batch Size=128, VGG-19 66,93 66,50
Optimizer=Adam, LeNet-5 53,00 51,00
Shape=227 AlexNet 60,29 61,50
ResNet-50 46,37 49,00
ResNet-152 35,68 40,50
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Parameter Default Parameter Architecture F1 Score Accuracy (%)
100 Learning Rate= 0.0001, VGG-16 69,05 69,00
Batch Size=128, VGG-19 72,36 73,00
Optimizer=Adam, LeNet-5 53,93 55,00
Shape=227 AlexNet 70,59 71,00
ResNet-50 40,73 44,00
ResNet-152 33,74 39,00
Learning 0,01 Batch Size=128, VGG-16 10,00 25,00
Rate Epoch=50, VGG-19 10,00 25,00
Optimizer=Adam, LeNet-5 10,00 25,00
Shape=227 AlexNet 10,00 25,00
ResNet-50 46,13 48,50
ResNet-152 43,12 47,00
0,001 Batch Size=128, VGG-16 10,00 25,00
Epoch=50, VGG-19 10,00 25,00
Optimizer=Adam, LeNet-5 50,75 56,25
Shape=227 AlexNet 10,00 25,00
ResNet-50 48,60 50,00
ResNet-152 56,96 57,00
0,0001 Batch Size=128, VGG-16 72,97 73,50
Epoch=50, VGG-19 66,93 66,50
Optimizer=Adam, LeNet-5 53,00 53,00
Shape=227 AlexNet 60,29 61,50
ResNet-50 46,37 49,00
ResNet-152 35,68 40,50
Optimizer SGD Batch Size=128, VGG-16 34,30 41,50
Epoch=50, Learning VGG-19 67,24 67,50
Rate=0.0001, Shape=227 LeNet-5 23,00 30,00
AlexNet 37,48 43,50
ResNet-50 35,15 38,50
ResNet-152 43,03 44,50
Adam Batch Size=128, VGG-16 72,97 73,50
Epoch=50, Learning VGG-19 66,93 66,50
Rate=0.0001, Shape=227 LeNet-5 53,00 53,00
AlexNet 60,29 61,50
ResNet-50 46,37 49,00
ResNet-152 35,68 40,50
Shape 32 Batch Size=128, VGG-16 63,94 63,50
Epoch=50, Learning VGG-19 59,97 59,50
Rate=0.0001, LeNet-5 55,03 56,00
Optimizer=Adam AlexNet 56,26 57,50
ResNet-50 42,69 43,50
ResNet-152 43,03 44,50
224 Batch Size=128, VGG-16 70,15 70,00
Epoch=50, Learning VGG-19 66,20 66,00
Rate=0.0001, LeNet-5 56,80 57,00
Optimizer=Adam AlexNet 58,29 58,00
ResNet-50 38,85 42,50
ResNet-152 41,11 43,50
227 Batch Size=128, VGG-16 72,97 73,50
Epoch=50, Learning VGG-19 66,93 66,50
Rate=0.0001, LeNet-5 53,00 53,00
Optimizer=Adam AlexNet 60,29 61,50
ResNet-50 46,37 49,00
ResNet-152 35,68 40,50
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256 Batch Size=128, VGG-16 74,58 75,00

Epoch=50, Learning VGG-19 66,20 66,00

Rate=0.0001, LeNet-5 56,89 57,00

Optimizer=Adam AlexNet 60,42 60,50

ResNet-50 47,79 49,50

ResNet-152 32,40 39,50

Fig. 5.(a) illustrates the average performance of the six surpassing LeNet, AlexNet, and ResNet. The superior
CNN architectures used in this study. Among them, performance of VGG-16 may be attributed to its more
VGG-16 demonstrated the highest overall accuracy, complex architecture relative to LeNet, particularly its
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Fig. 7. Confusion Matrix of our best model for
Lung sound Classification

use of more convolutional layers and RelLU activations,
which enable it to capture more detailed and abstract
features. VGG-16 also has a more consistent, deeper
architecture than AlexNet, as all its convolutional layers
use filters of the same size, enhancing its ability to
generalize across image classification tasks. Although
ResNet is theoretically superior in terms of efficiency,
depth, and training stability due to its residual learning
framework, in the context of this study, ResNet failed to
perform well when applied to spectrogram image data.
This result suggests that architectural complexity does
not necessarily guarantee better classification
performance. A similar pattern was observed between
VGG-16 and VGG-19, where, despite VGG-19 being
architecturally deeper, VGG-16 consistently achieved
better average performance.

Fig. 5(b) shows the impact of input dimensions (input
shape) on classification performance across CNN
architectures. LeNet, which was originally designed for
an input shape of 32x32x1, showed improved
performance when tested with larger input dimensions.
The influence of input shape on classification accuracy
was also evident across other architectures. Although
the average performance generally improved with larger
input shapes, the highest accuracy for each architecture
was achieved with an input shape of 227x227x3. This
may indicate that optimal performance is not solely
dependent on input size but also on the alignment of
other hyperparameter values, such as learning rate,
batch size, and training epochs. Fig. 6 presents the
average classification performance across variations in
several key parameters, including batch size, epoch
count, learning rate, and optimizer type. The average
results indicate that the best classification performance
was achieved with a batch size of 128, 100 epochs, a

learning rate of 0.0001, and the Adam optimizer.
However, it is essential to note that the best overall
classification accuracy, as shown in Table 3, was
obtained using a different set of parameter values. We
retrained the models using the configuration above to
validate the influence of these averaged optimal
parameter settings on each CNN architecture. The
performance results of these models are presented in
the Accuracy (%) column of Table 5. Compared with the
maximum accuracies previously achieved by each
architecture (shown in the Max Accuracy (%) column), it
becomes evident that the models trained using the

averaged optimal parameters yielded lower
performance across all architectures.
Table 4. Paired t-Test Results for Model
Performance under Different Parameter Settings
Parameters P Value Significant
Batch 64 - 128 0.1789 No
Size  “64-256 0.1995 No
128 - 0.1976 No
256
Epoch 25-35 0.9563 No
25-50 0.0934 No
25-100 0.0161 Yes
Learning 0,01 0.2197 No
Rate 0,001 0.0438 Yes
0,0001 0.1794 No
Optimizer  SGD - 0.0704 No
Adam
Shape 32-224 0.1616 No
32 - 227 0.1786 No
32 - 256 0.1238 No

Model performance was compared numerically using
the accuracy values obtained from each experimental
setting. To validate whether the observed differences
across parameters were statistically significant, a paired
t-test was applied for each parameter, and the results
are presented in Table 4.

Table 5. Performance evaluation of tested models
using their best parameter settings.

Parameters Model Acc. Max

(%) Acc.

(%)
Batch Size=128, LeNet-5 55.50 58.50
Epoch=100, AlexNet 64.50 71.00
Optimizer=Adam, 5 16 71.00  75.50

Learning

Rate=0.0001, VGG-19 66.50 73.00
Shape = 256 ResNet-50 53.00 50.00
ResNet-152 46.00 57.00
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The results presented in Table 5 indicate that using the
best average values of the parameters shown in Fig. 6
did not improve model performance. These findings
suggest that selecting optimal parameters for enhancing
model performance cannot rely solely on average-based
values; instead, a more refined approach is required.
One such approach is hyperparameter tuning, which
systematically searches for the optimal combination of
parameters to improve model performance [40]. Further
examination utilizing the confusion matrix, as depicted in
Fig. 7, offers a detailed perspective on the model's
sorting conduct across diverse respiratory sound
categories. The VGG-16 architecture displayed robust
capability in recognizing crackle and regular categories,
with 43 and 42 correct predictions, respectively.
However, the model showed a relatively lower accuracy
in detecting crackles and wheezes, where several
samples were misclassified as wheezes. This
misclassification may occur due to data loss during the
audio-frequency processing and to the acoustic
similarity between wheezing and combined crackle—
wheeze sounds, which share overlapping frequency
patterns. Additionally, the wheezes class presented
moderate confusion with crackle and wheezes,
suggesting that the model has difficulty distinguishing
between isolated and co-occurring respiratory events.
These results indicate that, although the model
effectively recognizes distinct sound patterns, it still
faces challenges when dealing with mixed or complex
respiratory sounds that exhibit overlapping spectral
features.

Table 6. The performance comparison of our

research model against state-of-the-art
benchmarks.
Methods

Year & Feature Architecture Accuracy

Ref , (%)
Extraction

2022 [17] Gammatone ResNet-50 60.80
gram

2021[17] Gammatone VGG-16 67.97
gram

2022 [18] Gammatone ResNet-50 62.29
gram

2021 [18] Gammatone VGG-16 62.50
gram

2021 [18] Gammatone  GooglLeNet 63.69
gram

2025[19] Mel MobileNet 74
Spectrogram

Our Mel VGG-16 75.5

research  Spectrogram

To evaluate the effectiveness of the techniques and
parameter configurations proposed in this study, we
compared the best-performing model developed in this
research with those from state-of-the-art studies that

utilized the same dataset. The results of this comparison
are presented in Table 6. A comparative study by [18],
which employed Gammatonegram feature extraction
with ResNet-50, VGG-16, and GoogleLeNet, reported
accuracies of 62.29%, 62.50%, and 63.69%,
respectively. Another study by [17] also utilized
Gammatonegram features and achieved a higher
accuracy of 67.97% using VGG-16 by tuning several
parameter settings. In contrast, research conducted by
[19] using Mel-spectrogram features achieved an
accuracy of 74% with MobileNet. However, this study did
not apply any preprocessing techniques and was trained
on an imbalanced dataset. Our research addresses
these limitations and fills this gap by incorporating
improved preprocessing, balanced data handling, and
optimized architectural configurations to achieve better
overall performance.

The performance comparison clearly demonstrates
that the combination of techniques used in this study
successfully improved the accuracy of lung sound
classification models relative to previous research.
Although the classification models developed in this
study outperformed those in previous state-of-the-art
research, their performance remains below the 90%—
95% accuracy threshold, indicating considerable room
for further methodological improvement. In addition to
performance differences, several similarites with
previous research were also observed. Consistent with
previous studies, our findings show that the results from
Mel-Spectrogram feature extraction are superior
compared to those state-of-the-art studies using
Gammatone feature extraction, and that increasing the
network depth does not necessarily lead to better
performance on this dataset.

This study used a single audio resampling frequency
and a fixed segmentation duration, leaving the impact of
varying these parameters on classification performance
unexplored. Furthermore, the data balancing technique
employed in this research relied solely on Random
Undersampling (RUS), a relatively simple method. Thus,
future research may benefit from exploring alternative
data balancing techniques, potentially leading to further
improvements in model performance. Further
optimization techniques such as data augmentation and
hyperparameter tuning could boost the model’s
performance. While the suggested model demonstrates
promising accuracy in classifying sound, its
implementation in an actual clinical environment may
face encounter several challenges, including variability
in real-world audio conditions, limited dataset diversity,
computational limitations, and matters of clarity,
regulatory approval, and workflow integration.

V. Conclusion
The results of this study demonstrate that the
combination of preprocessing techniques, audio

Manuscript received 3 October 2025; Revised 10 December 2025; Accepted 20 December 2025; Available online 3 January 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1256

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

179


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1256
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 168-184

e-ISSN: 2656-8632

transformations, and feature extraction methods,
classification algorithms, and parameter selection
successfully produced a lung sound classification model
with an accuracy of 75.5%, utilizing a CNN with the
VGG-16 architecture. The optimal model was achieved
with the following configuration: Learning Rate = 0.0001,
Batch Size = 128, Optimizer = Adam, Input Shape =
227%x227%3, and Epochs = 35. Although the achieved
performance falls within the "moderate" accuracy range,
further improvement is required to reach the "excellent"
range of 90%—-95%. Therefore, future research should
aim to identify more effective techniques to enhance
model performance in lung sound classification.
Potential directions for future work include optimizing the
model using hyperparameter tuning through various
strategies such as Grid Search, Random Search,
Bayesian Optimization, or Hyperband. This optimization
can be further supported by exploring variations in the
preprocessing stage, such as different frequency ranges
and audio segmentation durations, to better capture
relevant acoustic features.
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