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Abstract Since it is a manual process of monitoring to identify accidents, it is becoming more and more
difficult and results in human error, because of the rapid increase in road traffic and surveillance video.
This underscores the urgent need for robust, automated systems capable of identifying accidents, as well
as the burden of summarizing long videos. In order to address this issue, we propose CVAE-ADS, which is
an unsupervised Approach that not only detects anomalies but also summarizes keyframes of a video to
monitor traffic. This method operates in two phases. The stage of detecting Abnormalities intraffic video is
performed using a Convolutional Variational Autoencoder, which operates on normal frames and identifies
anomalies based on reconstruction errors. The second stage is the clustering of the perceived anomalous
frames in the latent space, followed by the selection of representative keyframes to form a summary video.
We tested the method with two benchmark datasets, namely, the IITH Accident Dataset and a subset of
UCF-Crime. The findings have shown that the proposed approach had great accuracy of accident detection
and AUC of 90.61 and 87.95 on IITH and UCF-Crime respectively and low rebuilding error and Equal Error
Rates. To summarize, the method achieves substantial frame reduction and produces high visual quality
with a wide variety of keyframes. It is able to measure up to 85 reduction rates with coverage of 92.5 on the
IITH dataset and 80 reduction rates with coverage of 90 on an Accident subset of the UCF-Crime Dataset.
CVAE-ADS offers a lightweight version of constant traffic monitoring, which utilizes limited organizational
capital to categorize coincidences in real-time and recapitulate video footage of the accidents.

Keywords Anomaly Detection, Video Summarization, Convolutional Variational Autoencoder, Latent
Space Clustering

l. Introduction

The World Health Organization (WHO) report
documented that 20-50 million damages or incapacities
per year and about 1.19 million deaths are caused by
traffic accidents. More than 90 per cent of road traffic
deaths are registered in low and middle-income
countries, and the lowest percentage in Europe. The
death of individuals between the ages of 5 and 29 as a
result of traffic injuries in the majority of cases. These
collisions also have a huge financial cost, accounting
for approximately 3 percent of the GDP of countries in
lost productivity, medical expenses, and care costs. To
address this, one of the United Nations stipulations is
to reduce road traffic deaths and injuries by 50 percent
by 2030 [1]. The United Nations has set a target to
minimize these deaths and injuries by half in 2030.
According to the Ministry of Road Transport and
Highways (MoRTH) report, 4,61,312 accidents were
reported in 2022, resulting in 4,43,366 serious injuries

and 1,68,491 deaths, higher than the previous year [2]
[3]. The majority of road accidents were a consequence
of violation of ftraffic regulations, of which over-
speeding caused 1,19,904 deaths. The other
significant violations included wrong-side driving, use
of a mobile phone while driving, and driving under the
influence of alcohol, and other violations, which further
emphasize the significance of the violation of traffic
regulations on the road. It is also worth mentioning that
other roads had the highest numbers of accidents with
39.4 percent, National Highways with 36.2 percent, and
State Highways with 24.3 percent, hence the need to
implement an alternative or efficient accident detection
system [2]. As computer vision and DL methods have
developed, Intelligent Transportation Systems (ITS)
have brought about the booming development of video
processing and given an urgent need to evaluate
abnormal situations in video [4]. Surveillance videos
provide anomalous event detection, which is regarded
as the most complicated and difficult issue in the
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context of computer vision and DL, with numerous
areas of application in surveillance [5]. The masses of
CCTV photographic cameras currently being
developed in the public and private areas create the
necessity of intelligent video monitoring. In this study,
we have taken the idea of coincidence discovery as an
anomaly detection problem, in which case accidents
are viewed as an exceptional deviation of normal traffic
patterns. Typically, conventional methods relying on
handcrafted characteristics are not resistant and
generalizable since lighting conditions or movement
differ [10]. DL based models, including CNNs, LSTMs,
GANs, and even autoencoders, are more effective at
handling the problem of these conditions. Rather than
manually designed features, it is able to automatically
detect patterns in the data and address them
effectively. It will render them more adaptive when
dealing with various datasets.

Most existing accident detection systems [13-16]
[18-20] do not integrate detection and synopsis, which
creates an overreliance on supervised algorithms and
large-scale annotated datasets. It is very hard to
acquire and annotate traffic accident data due to the
unpredictability, the rarity, and the diverse
environmental conditions in which traffic accidents
occur. Supervised learning models trained on limited,
scene-specific datasets often do not generalise to new
traffic situations or to the photographic camera angles
covered in the scenes they were trained on.
Conversely, unsupervised methods learn normal traffic
behaviour without any labelling information and detect
abnormal behaviour as a deviation of the resulting
model, providing enhanced scalability, flexibility, and
usability in continuous surveillance scenarios where
annotated accident videos are limited or unavailable.
This poses challenges for real-time environment
deployment, particularly in contexts with limited
annotated accident datasets. Additionally, numerous
approaches focus solely on detection. They do not offer
succinct visual summaries for quick incident evaluation,
reducing their practical usefulness for traffic
management centres.

Identifying abnormal accident incidents and the
Condensation of significant frames are both very critical
issues in traffic surveillance systems. It minimizes the
use of manual video inspections, thereby enhancing
quicker and more precise automatic identification of
incidents, thereby refining road safety and emergency
responses [8]. Due to the growing necessity of video
Recapitulation, numerous approaches have been
suggested to meet the numerous applications and
supplies of the different learning techniques, including
supervised, semi-supervised, unsupervised, and
reinforcement learning [6] [9]. The vsLSTM [25] and the
attention-based BILSTM [27] are supervised learning
methods that use labelled data to select the most

meaningful frames. None of the techniques uses the
less exact process of summarizing, although recent
techniques implement spatial-temporal modelling and
object tracking for the more specific task: DHAVS [28],
and the YOLOv5-DeepSORT-SSD pipeline [29]. An
example of such a model, like YOLOv8 [49] and
YOLOv11 [50], is created to diagnose an accident with
the help of a video recording of real traffic.
Unsupervised techniques, in their turn, do not rely on
labelled data. Instead, they are trained by statistical
regularities or deep features, including object-level
summarization using sparse LSTM autoencoders [30]
or GAN-based models, including CNN Bi-ConvLSTM-
GAN [33]. Semi-supervised methods are a compromise
between the two methods, involving both labelled and
unlabelled data, e.g., VESD [36] and hierarchical RL
systems, such as VDAN+ [37], to achieve an efficient
sum-up at a lower cost. Reinforcement learning models
are still described as sequential tasks based on
rewards and optimizing on diversity and
informativeness, e.g., Deep Summarization Network
(DSN) [38], 3D Spatio-temporal U-Net [40], and PRLVS
[41]. All these strategies emphasize the vitality of video
summarization in dynamic and multifaceted
substantial.

Convolutional Variational Autoencoder (CVAE) has
been adopted in this rather than an ordinary
autoencoder or the traditional CNN due to the principal
nature of the task of detecting accidents in surveillance
video, which relies on the ability to model normal
patterns and identify deviations of these patterns
through reconstruction error [10, 42, 44]. In contrast to
a traditional autoencoder, a VAE is trained to generate
a probabilistic distribution of normal traffic patterns,
continuity, and structure in the latent space are
imposed through Kullback-Leibler divergence [42, 43].
Such property is necessary for anomaly detection,
which allows better separation between rare abnormal
events (accidents) and the learned normal behavior
[45, 47, 48]. Additionally, integrating convolutional
layers into the VAE preserves the spatial structure of a
traffic scene, including lane structures, vehicle
positions, and distortions caused by impacts [12]. Such
spatial characteristics are normally sacrificed by fully
connected autoencoder structures [10]. As a result,
when an accident occurs, the CVAE produces
significantly higher reconstruction errors, and thus, the
reliability of anomaly scoring is increased [42, 44, 45].
Moreover, the structured latent space obtained by the
CVAE provides a useful embedding, which can be
further used to perform K-Means clustering, which
underpins the proposed key-frame selection and
summarization procedure [22, 30, 32].

This study aims to create and evaluate a lightweight,
unsupervised framework that can detect traffic
accidents and produce brief visual summaries in real-
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time from surveillance videos,
requirement for manual annotations.

In this research, the proposed approach is designed
and evaluated using real-world ftraffic surveillance
videos obtained from fixed CCTV cameras installed at
highways and urban intersections. The data sets used
have diverse conditions such as variant lighting (day
lighting, night lighting, early morning), traffic
congestion, changing weather, and partial occlusions,
hence, realistic traffic conditions. The current execution
assumes a comparatively fixed camera angle and
makes no specific allowances regarding dynamically
tracking a photographic camera, aerial shots, or
extreme unfavorable conditions, like heavy fog or storm
events. Such restrictions identify possible ways of
improving and expanding the proposed framework in
the future. Specifically, the primary contributions of the
given paper in the Accident detection and video
summarization include:

1. Convolutional-VAE  Accident Discovery and
Summarizer (CVAE-ADS) is a complete system that
we are proposing to detect accidents based on
reconstruction-driven anomaly scoring using a
single convolutional variational autoencoder that is
trained solely on normal traffic scenes.

2. To decrease redundancy and emphasize important
content, we fit a latent space clustering-based
outline plan, which is effective in choosing
keyframes of accidents as representatives to review
the incident effectively.

3. Our unsupervised learning-based approach
requires no manual labelling, hence it is scalable for
large surveillance networks at low cost.

4. Moreover, the design is tailored for real-world
oriented architecture and easily integrated into the
traffic monitoring systems, which facilitate post-
processing tasks like emergency response,
insurance verification, and legal accountability.

The presented CVAE-ADS framework is feasible in the
real world. Its lightweight, unsupervised nature enables
integration into a real-time traffic monitoring system,
enabling timely accident detection and concise
summary generation without manual data labeling. The
capabilities are particularly useful in traffic-intensive
care facilities, emergency response, and insurance and
litigation appraisal, as well as post-processing near-
miss incidents, where rapid and precise interpretation
is essential. The following outlines the structure of the
current article. Section Il provides a complete analysis
of related work, including traffic accident detection,
video summarization, and the basic principles of
Variational Autoencoders for anomaly
detection. Section Il offers a comprehensive
description of the proposed CVAE-ADS framework that
encompasses architectural design, a two-stage

eliminating the

processing pipeline, model components, and
hyperparameter specifications. It also describes the
datasets, evaluation metrics, and experimental set up
used to evaluate accident detection and
summarization. In Section IV, we will report and
analyze the experimental results, including the
accuracy of accident detection, the summarization
effectiveness, the visual analyses, and the comparison
against state-groups. Ultimately, Section V looks at
some important observations, strengths, and
limitations of the approach studied in this research
paper. Meanwhile, Section VI tries to conclude the
study and gives directions to future research and
enhancements to this system.

Il. Related Work

Various authors have proposed various approaches
and techniques for recognizing or classifying accidents.
In the related work, a review of various accident
detection and video Summarization approaches is
discussed. While video anomaly detection has been
extensively addressed in literature, few works consider
road-accident detection and video summarization in a
single unified unsupervised framework. Lack of real-
world accident data for aviation, privacy concerns in
surveillance, and high cost of annotating detailed data
are all factors that hinder access to large datasets with
task-specific focus. For this reason, this section offers
a brief yet comprehensive review of works related to
accident detection and video summarization, as direct
or indirect anomaly detection issues in traffic situations.

A. Related Work on Accident Detection

Singh & Mohan [12] introduced an unsupervised
method using Stacked Denoising Autoencoders and
one-class SVM for accident detection, achieving 77.5%
accuracy. Though effective in varied lighting, it
struggles with occlusions, night scenes, and traffic
complexity. Srinivasan et al. [13] proposed a road
accident detection method combining DETR for object
detection and a Random Forest Classifier for event
prediction, achieving a 78.2% detection rate. While
effective, DETR shows limitations in detecting small or
low-visibility objects. Wang et al. [14] developed a
vision-based crash detection framework for low-
visibility traffic scenes using Retinex for image
enhancement, YOLOv3 for object detection, and a
decision tree for classification. It achieved 92.5%
accuracy with a 7.5% false alarm rate. Robles-Serrano
et al. [15] suggested a DL architecture that uses CNN
and LSTM to learn spatiotemporal features of accidents
in traffic videos. Although it works well in diverse
conditions, its performance declines in scenes of high
traffic density. Khan et al. [16] applied CNN and rolling
prediction in detecting the presence of an accident
anomaly, where 82 percent was obtained, but the
results decreased in foggy or remote scenes. Pawar et
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Fig. 1. An Architecture of a Variational Autoencoder

al. [17] suggested a DL-based model in which they
integrated a Convolutional Autoencoder and a
Seq2Seq LSTM to describe spatiotemporal features of
the accident. It scored 79% and 84.7% on the IITH
dataset and DOTA, respectively, which is 11.7 times
higher than that of any other unsupervised method.
Pathak & Elster [18] proposed an accident detection
model using YOLOv2 with transfer learning, trained on
the UCF-Crime dataset and tested on the IITH dataset,
achieving 76% mAP.

An object interaction-based approach for accident
detection, localization, and severity description,
utilizing heatmaps and textual summaries, is proposed
by Thakare et al. [19]. It achieved AUCs of 69.7%
(UCF-Crime) and 72.59% (CADP), with low false alarm
rates, showing competitive performance. Adewopo &
Elsayed et al. [20] introduced a lightweight I3D-
CONVLSTM2D model that fuses RGB and optical flow
for accident detection in smart city traffic videos,
achieving 87% mAP and outperforming existing
methods. While these techniques have improved
accuracy using DL and object detection pipelines, there
are still some issues. Many techniques rely on explicit
object detection, handcrafted motion features, optical
flow features, or predefined thresholds, which typically
perform poorly in complex real-world scenarios such as
occlusion, high vehicular density, low-lighting
conditions, poor visibility due to adverse weather, and
moving cameras. Furthermore, most techniques
consider crash detection as a standalone activity and
lack a holistic way to condense long-duration videos.
This makes them less useful for real-time traffic
surveillance and automatic crash detection in intelligent
transportation systems.

B. Related Work on Road Accident Video
Summarization

Research on road accident detection and
summarization remains relatively limited, with most
existing work focusing on general video summarization
or traffic anomaly detection using traditional vision
methods or DL models like CNNs. This article surveys
a select set of studies specifically addressing accident-
focused video summarization. Thomas et al. [7]
developed a perceptual video summarization method
for accident detection using the YouTube-8M and
Urban Tracker datasets, showing strong performance
across metrics like saliency cost and detection rate. But
it could only handle single-camera shots and was not
able to differentiate collisions and near-collisions,
which implies the necessity of depth-based
segmentation. The article by Kosambia et al. [21]
applied a video synopsis method to the IITH dataset to
detect accidents with a ResNet, and ResNet-152
performed best. They suggested parameter tuning,
additional training data, and localization techniques to
further enhance performance. Pramanik et al. [22]
proposed Z-STRFG, a Z-number and spatio-temporal
rough fuzzy granulation-based system on the
YouTube8M, Urban Tracker, and Anomaly20 to detect
anomalies and video summaries of traffic videos. It was
more accurate and fast in the complex conditions, but
was confined to monocular vision and had no
multimodal support, which impacted the real-time
applicability.

Tahir et al. [23] proposed a privacy-preserving video
summarization approach for accident detection using
YOLOVS5, trained on a synthetic dataset and tested on
real-time data with 55-85% accuracy. Privacy is
ensured through synthetic training data and video
encryption, with summaries reducing duration by an
average of 42.97%. Saxena et al. [24] employed
YOLOv5 for accident detection and proposed event-
based video summarization to reduce surveillance data

Manuscript received 16 August 2025; Revised 10 November 2025; Accepted 20 December 2025; Available online 1 January 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1139

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

188


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1139
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 185-205

e-ISSN: 2656-8632

storage. Trained on synthetic data and tested on real
traffic videos, the approach effectively detected
accidents and cut video length by 20-50%, improving
storage efficiency.

Although these studies demonstrate the need for
summarization regarding video length and storage, it
should also be noted that resolving object detection
confidence, manual heuristics, and synthetic training
data are all problems that must be addressed. These
limitations stand to affect all generalizations involving
uncontrolled, real world traffic systems. More than this,
there are no systems that depend on the latent
structure of the video to generate representative
summaries coherently. Most of all, there is simply no
attempt to present a separate, unified, and
unsupervised architecture where accident detection
and summary are treated as a singular, unified
problem.

C. Overview of Variational Autoencoder

Variational Autoencoders (VAEs) are generative
models that extend traditional autoencoders by
encoding input data into a probabilistic latent space,
enabling the generation of realistic and diverse
samples. Itis particularly effective for image generation
and data compression, as well as in anomaly detection
[42] [43]. Fundamentally, VAEs are based on deep
neural networks, but they employ a Bayesian inference
principle. A latent representation learned by VAEs is
structured and continuous, which ensures that points in
the latent space produce meaningful outputs when
decoded. This allows VAEs to generate new data
points by sampling them from the learned latent space
[44].

Fig. 1 shows the architecture of a variational
autoencoder, which consists of three key components:
an encoder, a latent space, and a decoder. The
encoder compresses input data into a latent
representation by learning some parameters that
define a probability distribution, usually a Gaussian.
VAEs do not sample from these distributions directly. It
uses a reparameterization trick that makes an entire
model differentiable and thus trainable via
backpropagation. A sample is drawn from the latent
space and passed to the decoder, which attempts to
reconstruct the original input. The training process
involves minimizing two losses: one that ensures the
output closely matches the input, and another that
regularizes the latent space to follow a known
distribution, often a standard normal. This architecture
enables VAEs to learn meaningful, structured data
representations that are useful for generating new data
samples and for anomaly detection.VAEs used in
anomaly detection (particularly in tasks related to
accident detection) are trained on normal traffic scenes
only. They get to know how to recreate them.
Nevertheless, under abnormal conditions such as

accidents, the quality of reconstructions reduces,
leading to an increase in reconstruction errors, which is
an indication of anomalies. Learned latent features are
also useful to give a summary of the scene, and these
can be used to assist downstream tasks such as
classification or keyframe extraction [44]-[47].

Most existing approaches come with significant
challenges. Traditional models like SVMs and decision
trees rely on handcrafted features and often fail in real-
world traffic due to occlusion, blur, or poor lighting. DL
models, while more advanced, usually need large
amounts of labelled data, which is both time-consuming
and expensive to collect. On top of that, many of these
models are too computationally heavy for real-time use.
Even though the standard VAE, which is primarily used
for representation learning and generative modeling, is
directly applied in advanced ftraffic surveillance
scenarios, it remains limited. in this research, we
incorporate both VAE and convolutional architectures
by employing additional layers and creating the
Convolutional Variational Autoencoder-based accident
detection and summarization (CVAE-ADS). Unlike all
other approaches, where detection and summarization
are considered as independent processes, our system
utilizes the learned latent distribution not only for highly
efficient normal-accident pattern discrimination but also
for latent clustering-based keyframe extraction, which
we believe is a novel approach. This fully integrated,
self-organizing system has a low annotation effort
requirement, is robust under various traffic conditions,
and has the ability to create efficient and meaningful
summaries for quick incident analysis.

lll. Methodology

As simple frame reconstruction is made possible in
traditional methods such as PCA or sparse coding, itis
not usually sufficient to analyze complex spatial
patterns and the overlaying structure of video scenes
in the real world. video scenes. Overall, such forms of
linear methods are unable to receive the richer spatial
context, and it is difficult to identify subtle anomalies
that are not just pixel differences. Instead, our
proposed CONV-VAE model \utilizes deep
convolutional encoders, which can learn rich multi-level
features as well as a probabilistic latent space that
recognizes the nuanced irregularities in a better way
from the traffic videos. This approach not only improves
anomaly detection but also provides meaningful video
summarization that conventional approaches are not
designed to handle.

A. Overview of CVAE-ADS

The proposed CVAE-ADS approach is a two-stage
framework that efficiently detects accidents and
summarizes key frames from ftraffic surveillance
videos. Initially, the Convolutional Variational
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Autoencoder (CVAE) is trained only on normal traffic
scenes. During the testing phase, the model
reconstructs normal frames very well; but does not
reconstruct the accident frames correctly, which in
turns to high reconstruction errors. This error is then
used for reconstruction-based anomaly scoring, where
higher reconstruction error indicates a greater
likelihood that the frame is anomalous (i.e., contains an
accident). These values are converted into regularity
scores, where lower scores represent a higher degree
of abnormality and therefore a higher confidence of an
accident occurrence.

In the second stage, the internal compressed latent
features generated by the proposed CVAE from
detected anomalous frames are extracted. These latent
features, often referred to as the latent space, encode
compact, meaningful information about the visual
content of each frame. To group visually similar
accident frames and remove redundancy, these latent
vectors are clustered using the K-Means algorithm.
This process, referred to as latent space clustering,
groups frames with similar visual characteristics into
distinct clusters. From each cluster, a representative
frame is selected as a keyframe. These selected
keyframes are then arranged chronologically, are
compiled into a short video that highlights key moments
of the incident, supporting quick review and analysis.
Fig. 2 presents the process flow diagram of the
proposed CVAE-ADS.

B. Model Architectures

The suggested model combines a Convolutional
Autoencoder (CAE) with a Variational Autoencoder
(VAE) with the encoder being created to remove the
hierarchical spatial features of traffic frames with the
help of convolutional operations and nonlinear
activations and progressive down sampling. The mean
and log-variance are parameterized by separate dense
layers to permit sampling the latent space
stochastically using the reparameterization trick. The
decoder mirrors the encoder using deconvolutional and
up-sampling to reconstruct the input frames. This
design allows the model to effectively learn the
distribution of normal traffic patterns and generate
accurate reconstructions, making it suitable for
unsupervised anomaly detection. Fig. 3 shows details
of the internal architecture of the Convolutional
Variational Autoencoder used for accident detection
and video summarization.

C. Model Architectures

Specifications

Table 1 shows the Hyperparameter and Architecture
Specifications of the proposed CVAE-ADS. Each video
frame is resized to 128 x 128 x 3 before being passed
into the CVAE encoder. The encoder is composed of
multiple convolutional layers (Conv2D) with increasing

and Hyperparameter

filter sizes (32, 64, and 128) and RelLU activation,
followed by max-pooling to progressively reduce spatial
dimensions while preserving essential visual
information. The resulting feature maps are flattened
and connected to a dense layer, from which two parallel
layers estimate the mean (p) and standard deviation (o)
of the latent distribution. A latent vector z is then
sampled using the reparameterization trick.

The decoder mirrors the encoder structure and
reconstructs the input frame by applying a dense layer,
followed by up-sampling, and convolution operations to
progressively restore the spatial resolution. The final

Input Video Frames

[ Preprocessing ]

—

Convolutional Variational Autoencoder}
(CVAE)

l | Latent Space

Reconstruction Error Ei J

|

[ Regularity Score Generation Rg;) ]

!

[ Compute threshold(T)

Normal Frames Accident Frames

[ Latent Feature Extraction ]-7
!
K-Means Clustering
in Latent Space

Accident Detection Phase

[ Keyframe Selection ]

Summarization Phase

[ Redundancy Removal using SSII\a

I
Video Summary Generation

Fig. 1. Process flow diagram showing the two-
stage

layer uses a Sigmoid activation to generate the
reconstructed frame matching the original input size.
The model is trained using the Adam optimizer with a
learning rate of 0.0001, a batch size of 64, and 100
training epochs. The total loss combines the mean
squared reconstruction error with the Kullback—Leibler
divergence, allowing the CVAE to learn a compact
representation of normal traffic patterns and to detect
accidents through increased reconstruction error
during testing.
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Table 1. Hyperparameter and Architecture
Specifications of CVAE-ADS
Component Specification
Input size 128 x 128 x 3
32 filters, 3x3, ReLU +
Conv1 .
MaxPooling
Conv2 64 filters, 3x3, ReLU +
MaxPooling
128 filters, 3x3, ReLU +
Conv3 k
MaxPooling
Dense (encoder) 128 units
Latent dimension (z) 64
Decoder input 16 x 16 x 128

reshape

128 - 64 — 32— 3
Deconv layers

filters
Output activation Sigmoid
Optimizer Adam
Learning rate 0.0001
Batch size 64
Epochs 100

Loss function MSE + KL Divergence

D. Training Protocol and Implementation Details

The proposed CVAE-ADS framework is trained in an
unsupervised manner using only normal traffic frames.
Prior to training, all input frames are resized to 128 x
128 x 3 and normalized to the range [0, 1]. The model
is optimized using the Adam optimizer with a learning
rate of 0.0001 and a batch size of 64. Training is
performed for a maximum of 100 epochs. The objective
function is defined as a weighted combination of the
mean squared reconstruction loss (MSE) and
Kullback—Leibler (KL) divergence, where the
reconstruction term penalizes pixel-level differences
between the input and reconstructed frames, and the
KL term regularizes the latent distribution towards a
standard normal distribution. A 30% validation split is
used during training to monitor generalization. To
prevent overfitting and ensure stable convergence,
early stopping is applied with a patience of 10 epochs,
and the best-performing model weights are restored
automatically. Network convergence is determined by
the stabilization of both the training and validation loss
curves.

E. Convolutional - VAE for Anomaly Detection
The proposed CVAE-ADS framework leverages a
Convolutional Variational Autoencoder (CVAE) to

detect anomalies in traffic video frames. After standard
preprocessing and normalization (as described in

Section D), each video frame is fed into the CVAE
encoder for anomaly modelling. The encoder is a stack
of multiple convolutional layers with ReLU activations
that are progressively reduced in size by max-pooling,
while preserving spatial hierarchy. The input frame x €
RIXWXC phass to the encoder, which transforms it into a
latent representation z € R%, through a series of
transformations. This introduces stochasticity in the
latent space using a Variational Autoencoder (VAE)
framework, where it learns a mean peR? and a
standard deviation ¢ € R from the encoded features
are calculated using Eq. (1) [35]:

w=fu(x), logo? = f5(x) (1)
A sample latent vector z using the reparameterization
trick is as shown in Eq. (2) [35]:

z=p+0Q0e€ €e~N(0,I) (2)
This also allows for gradient-based optimization as well
as introducing stochasticity into the latent space. The
decoder takes the latent vector and reconstructs the
input frame X = g(z), trying to replicate the original
frame using transposed convolutional layers. CVAE
(Convolutional Variational Autoencoder) minimizes a
combined loss which contains two components:
Reconstruction loss that measures how well the model
can reproduce the original input using Eq. (3) [42]:

L recon = %Z?jzl lx; =% X N =3, | x; — 5]*3)

Kullback-Leibler Divergence calculated using Eq. (4)
[35] Regularizes the latent space by encouraging the

approximate posterior to match the standard normal
distribution:

L = =325, (1 +log(eD) — i —oD)  (4)

The total loss encourages the model to accurately

reconstruct input images while enforcing a regularized,

continuous latent space for improved generalization in
Eq. (5) [43]:

L cvaeE = EJCdit [£ recon + Lk ] (5)

After training on normal traffic frames, the model is

evaluated on test frames. For each frame xj , the

reconstruction error Ex]. is computed using the mean

squared error as in Eq. (6) [35]:

1 =R 2
Ex]. = H—WCZh'W'C (xj (hw,c) —x,(hw, c))
(6)

To interpret reconstruction errors as anomaly
likelihood, the errors are scaled into regularity scores
R(x;)€[0,1], where higher scores indicate stronger
similarity to normal data and lower scores suggest
anomalies. The regularity score is computed as in Eq.
(7) [35,36]:
Ey.— min(E)

R(X]') =1- rnax(EJ)—min(E) +e (7)
Here, min(E) and max(E) are the minimum and
maximum reconstruction errors computed over the
entire test set. € is a small positive constant added for
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numerical stability. Based on these scores, a binary
classification is performed using a threshold t to
distinguish normal from anomalous events as in Eq. (8)
[37]:

if R(xj)<t (8)

otherwise
To determine an appropriate threshold t in Eq. (9) [42],
we adopt a statistical thresholding approach based on
the distribution of reconstruction errors on normal data:
T = Ugrr + 2 Ogrr (9)
Here, Uer and og are the mean and standard
deviation of reconstruction errors from the normal
training set. This approach assumes that normal
instances are well reconstructed, while anomalies
exhibit higher reconstruction errors and consequently
lower regularity scores. The selected threshold
tdirectly influences the trade-off between false
positives and false negatives. A lower threshold value
may classify more frames as anomalous, increasing
recall but potentially reducing precision due to higher
false positive rates. Conversely, an increased threshold
will lead to more conservative detection, which will
increase precision and may overlook subtle accident
events, which will reduce recall. The 2 - 6. value was
selected empirically in this publication to provide a
balanced trade-off between accuracy and recall, as
shown in the published evaluation measures. To further
prove the choice of the best threshold, a sensitivity
analysis was made by changing the scaling factor of
the standard deviation of the reconstruction errors.
Thresholds in the range of pg + 1.5 - 0y 10 P +3 -
0.y Were evaluated on the validation set. Lower values
favored higher recalls at the cost of increased false
positives, while higher values improved precision but
missed subtle anomalies. The threshold of pg, + 2 - 0oy
consistently provided the best balance, achieving the
highest F1-score and a stable trade-off between
precision and recall. Therefore, this value was selected
for all experimental evaluations.

F. Latent Space Clustering for Summarization

Once the frames of interest regarding an accident have
been identified through the anomaly detection pipeline,
a process of summarization goes into effect to create a
concise yet informative summary of the video. This is
done through the exploitation of the latent embeddings
retrieved by the Conv-VAE that captures high-level
structural features when projected to a reduced-
dimensional space. Let the sequence of input video
frames be denoted as {xi, x, ..., x{} where each frame
xt € RIP*WXC represents the video frame at time t. These
frames are mapped to latent space using the encoder

function fencas in Eq. (10) [37]:

Zt = fenc(xt), fort=1, ..., T (10)
Here, zt € Rd denotes the d-dimensional latent
embedding for frame Xt. To capture the diversity of

Anomaly(x;) = {(1),

visual content, the latent representations {Z1, Z2, ...,

Zr} are clustered using the K-Means. The objective of
clustering is to partition the latent space into clusters

{c1, c2, , Ck} by minimizing the intra-cluster
variance as follows in Eq. (11) [37]:
. 2
min - Yhoi Yzec, |12 — wel| (11)
{“k}k:l

where py is the centroid of the cluster C,,. The number
of clusters K determine the level of summarization and
is chosen empirically based on the desired granularity.
From each cluster C,, a representative keyframe is
selected by identifying the latent point z; € C; in Eq.
(12) [35,37] that lies closest to the cluster centroid u:

* . 2
zi =arg;reucr;||2—ukll (12)

The corresponding input frame xj, is then designated
as the keyframe for cluster C,. This ensures that the
selected keyframes are structurally representative of
their respective visual contexts within the video. In this
work, the number of clusters K is not fixed arbitrarily,
but it is selected empirically based on the distribution
and diversity of the accident-related frames in each
video. Since the primary objective is video
summarization rather than fine-grained classification, a
relatively small and compact value of Kis preferred in
order to avoid unnecessary fragmentation of similar
events. To ensure that the selected value of
K produces meaningful and well-separated clusters,
and silhouette analysis is used as a cluster validation
technique. The silhouette score measures the similarity
of a frame’s latent representation to its own cluster
compared to other clusters. Higher silhouette values
indicate better cluster compactness and separation.
The value of K that maximizes the average silhouette
score is chosen as the optimal number of clusters for
that video sequence. This adaptive selection strategy
ensures that the resulting clusters exhibit strong
compactness and separation, leading to representative
and non-redundant keyframes in the final summary. To
eliminate redundant frames that may carry visually
similar content, pairwise structural similarity is
computed between candidate keyframes using the
Structural Similarity Index (SSIM) in Eq. (13) [35,37]:

(Zpiu]’+C1)(20‘ij+C2)
p.l?+p.?+cl)(cl?+0§+cz)

SSIM(x;,x;) = ( (13)
where y;, o?, and o;; denote the mean, variance, and
covariance of pixel intensities in grayscale images x;
and x;, respectively. As a way of limiting repetition in
time and to enhance processing power, frames whose
Structural Similarity Index (SSIM) is greater than a
predetermined value are deemed visually redundant

Manuscript received 16 August 2025; Revised 10 November 2025; Accepted 20 December 2025; Available online 1 January 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1139

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

192


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1139
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 185-205

e-ISSN: 2656-8632

Input
Video Frames

[128 X 128X 3]

128x128x32
64 x 64 x 64
32x32x 128_

il ConvzD
&l MaxPooling2zD M UpSampling2D

Decoder
Reconstructed
; Frames
| [128X128X3
: |=
.

16X 16 x 128
32x32x128
32X32x64
64 x 64 x 64
64 x64x32
128x128x 32
128x128x3

lcul
Re‘(j)au :tI; ::fi o Regularity Score Compute _threshold
. — using
Error Ei Generation R(x;) W

- Normal Frames

< Rix)<t
T ]
“\/ - Accident Frames | |

o Accident Detection

Redundanf:y Keyframe K-Means Clustering Latent Feature
Removal using Selection in Latent Space Extraction
o ossm
S Video SUMMATIZATION - omeeee oo 3

Fig. 3. Detailed architecture of the Convolutional Variational Autoencoder used for accident detection

and video summarization.

and are not processed any further. The last summary
video was assembled by arranging the chosen
keyframes in chronological sequence and assembling
them with a frame rate of 5 frames per second to
facilitate qualitative analysis.

G. Dataset Discussion

The dataset to be applied in this research is the [ITH
road accident dataset, which was gathered through the
CCTYV surveillance system in Hyderabad City, India. In
both video clips, the timing starts a few minutes prior to
the event that an accident takes place and extends
several minutes after [12]. There was a total of 94, 720
normal frames used in training, with 33,280 frames
used in testing, consisting of 32,417 normal frames and
863 accident frames. Fig. 4 gifts displays sample
records from the IITH data. UCF-Crime dataset is a
massive video anomaly detection benchmark with 13
categories of real world incidents. In this case, we
narrowed our research to the road accident subset,
consisting of 150 CCTV videos obtained at varying
times of day and night conditions, and with varying
background scenes. Out of these, 127 were used for
training and 23 for testing [48]. The dataset also has a
high number of normal videos, and they can be well
trained in one-class anomaly detection models.

H. Evaluation Metrics

In this section, we provide the evaluation metrics for our
proposed Conv-VAE-based framework, both in the
accuracy of the accident detection task and the
keyframe summarization method. To determine the

performance of Accident detection and latent
clustering-based analysis of summarization, we used
quantitative measures. The evaluation metric was
chosen to capture both technical and practical
performance of the surveillance systems in traffic.
Although accuracy is limited to overall correctness, it is
insufficient when there is an imbalance, as in accident
detection. Accuracy is thus applied in order to decrease
false alarms and recall to guarantee that real accidents
are not overlooked. The F1-score offers a moderate
perspective of both. The AUC shows that the model is
capable of making a distinction between normal and
accident frames according to the distribution of
reconstruction scores, whereas the EER demonstrates
the compromise between false positives and false
negatives.

To be able to summarize, PSNR measures the
quality of reconstruction, making sure that the normal

Fig. 4. Sample video frames from IITH Dataset.
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patterns are learned correctly and that the accident
frames result in more reconstruction errors. The rate of
reduction indicates the level at which the video is
condensed, and it is significant with regard to time and
storage. The diversity rate (1 -SSIM) is used to
guarantee that the keyframes used are not duplicates
in terms of visual appearance. The silhouette score is
used to describe the quality of clustering, which is
based on the ability of the frames to cluster well in the
latent space. The percentage of coverage ensures that
the significant portions of the chain of accidents are not
overlooked. Combined, these measurements indicate
that the produced summaries are small, informative,
and applicable to the real world, such as traffic
monitoring, incident review, and emergency analysis.

1. Accident Detection Metrics

In an effort to assess the model in terms of
distinguishing the accident and the normal frames, we
utilized standard classification measures. Accuracy
indicates the general percentage of correctly identified
frames. Precision is the measure of the number of
predicted frames which are really accidents and recall
the number of actual accidents which have been
identified [11]. F1-score is a harmonic mean of
precision and recall, which offers a balanced index
when the false positives or false negatives are both of
interest [11]. We would also take the Equal Error Rate
(EER) that is the error rate at which the false positive
rate is the same as the false negative rate and this
provides information on the trade-off between the two
errors that the model can make. The curve of the ROC
indicates the level at which the model distinguishes
between accident and normal frames by displaying the
true positive rate and false positive rate at different
thresholds. This performance is summarized in the
AUC score; the higher the value, the closer it
approaches 1, the higher the performance in
differentiating the two classes.

2. Latent Space Clustering-Based Summarization
Evaluation

In order to extract important events in the sequence of
accidents, we use clustering on the latent space of the
trained Conv-VAE. The evaluation will be a
combination of quantitative and qualitative analysis to
make the summaries small, varied and representative.

A formal user study was not carried out in this work,
but the chosen metrics of summarization are aimed at
their close reflection in human perception of a good
summary. Quantitatively, the rate of reduction is used
to evaluate the compactness, and the diversity rate (1
- SSIM) is used to evaluate visual diversity among
selected frames. The silhouette score, which is
computed on original latent representations, is used to
assess the quality of clustering, as well as aid in the
decision of an acceptable number of clusters. The

percentage coverage guarantees that the chosen
frames will cover the whole temporal range of the
incident. Also, PSNR is used to determine the visual
fidelity of reconstructed frames by evaluating the pixel-
by-pixel similarity of the reconstructed images to the
original images. On the qualitative level, we make use
of t-SNE-based latent space visualization to visualize
the segregation and classification of accident and
normal frames intuitively, which justifies the utility of our
summarization strategy. A combination of these
measures would give an approximation of what the
human would consider a summary, as far as
completeness, conciseness, and informativeness. The
good qualitative correspondence between these
quantitative findings and the visual summaries also
justifies the usefulness of the proposed approach that
can be applied in practice.

IV. Results

This section presents the outcomes regarding our
accident detection and video summarization model,
built using a latent space clustering approach with a
Conv-VAE model.

A. Accident Detection Performance

In this subsection, we will emphasize the results of our
model of accident detection using the Conv-VAE
architecture on the [ITH Accident Dataset and the UCF-
Crime road-accident subset. Even though we train our
model in an unsupervised fashion and only use normal
frames in the training process, we manually annotated
video frames of the IITH dataset with the characteristics
of a normal or an accident to facilitate a quantitative
analysis. We therefore report on key performance
indicators, such as F1-score, accuracy, precision,
recall, AUC, and Equal Error Rate (EER). Conversely,
the UCF-Crime dataset contains the temporal
annotations, which are predefined and show that there
are some anomalous events in each video segment,
which can be road accidents. This dataset therefore
does not require manual labelling. These annotations
allow one to directly and consistently assess the
detection abilities of the model on unconstrained video
data of the real world. Table 2 shows some important
performance measures of the model, such as
Accuracy, Precision, Recall, F1-Score, AUC, and EER.
Fig. 5 provides a visual comparison of these
performance metrics across both datasets, clearly
illustrating the effectiveness of our approach across
different data sources. Additionally, the Receiver
Operating Characteristic (ROC) curves for both (a) the
IITH dataset and (b) the UCF-Crime dataset are shown
in Fig. 6, offering further insight into the model's
discriminative capabilities. A short examination of the
erroneously classified frames reveals that false
positives are mostly found in sudden but not accidental
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Table 2. Performance comparison of the
proposed method on the IIT Hyderabad and UCF-
Crime datasets.

Metric 1) UCF-Crime
Hyderabad Dataset
Dataset

Accuracy 93.5% 91.2%
Precision 0.874% 0.845%
Recall 0.801% 0.768%
F1-Score 0.836% 0.804%
AUC 0.9061 0.8795

EER 18.2% 21.4%

Fig. 5. Sample video frames from IITH Dataset.

visual events such as sudden braking,sharp lane turns,
and heavy occlusions, which enhance the error in
reconstruction and reduce accuracy (0.874 and 0.845
in ITH and UCF-Crime, respectively). False negatives,
on the other hand, are largely due to small or far
collisions and low visibility (e.g., low light or motion
blur), which yields low recall values of 0.801 (IITH) and
0.768 (UCF-Crime).

These results suggest that CVAE-ADS is useful in
identifying visually salient accidents but might fail to
pick up finer details, which implies that the use of a
temporal model and attention could help to enhance
performance. To assess the stability of the proposed
CVAE-ADS framework, all the experiments were run
repeatedly with various random initializations as
demonstrated in Table 3. The results reported on the
performance metrics are the average values
throughout these runs, as well as standard deviations.
The differences in AUC and F1-score were also not
very significant (within +1-2 percent), and this implies
that the model gives consistent and reliable results
every time it is run. This proves that the reported
performance is not an outcome of random chance, and
it shows the strength of the suggested course of action.
Since these metrics capture overall model behavior,

Table 3. Performance Stability of CVAE-ADS
Across Multiple Runs

Metric IITH (Mean * UCF-Crime
Std) (Mean % Std)

Accuracy 93.5+0.8 91.2+1.1
AUC 90.61 + 1.02 87.95+ 1.28
F1-score 0.836 + 0.03 0.804 £ 0.04

variability is reported only for Accuracy, AUC, and F1-
score, while the remaining metrics showed consistent
trends across runs.

B. Threshold Sensitivity Analysis
To further examine the influence of the reconstruction

error threshold on detection performance, a sensitivity
analysis was conducted by varying the threshold from

Table 4. Comparison of model performance
metrics across different statistical threshold
levels.

F1-
score

k value Threshold Precision Recall

1.5 M+ 1.50 0.74 0.86 0.79

2.0 M+20 0.87 0.80 0.83
25 b+ 2.50 0.91 0.71 0.80
3.0 p+30 0.95 0.62 0.75

Herr + 1.5 0gr tO ey + 3 - 0er. The corresponding
changes in Precision, Recall, and F1-score are
reported in Table 4. As shown, the threshold of pg, +
2 - 0. achieves the most balanced trade-off between
false positives and false negatives and is therefore
selected for all final evaluations.

C. Latent Space-based Video Summarization

Performance

This section is a report of the findings of our keyframe
summarization process, as is presented in Table 5. The
latent space clustering performance is demonstrated
by the performance of the latent space clustering on
summarizing diverse and concise summaries. The
approach was evaluated on the [ITH and UCF-Crime
datasets to confirm its effectiveness. Fig. 7 summarizes
the relative results of our summarization measures on
both datasets and demonstrates that the proposed
diversity, and coverage. The performance of video
summarization usually differs depending on the
sequences based on the duration of the sequences,
movement, and events. CVAE-ADS model preserves
high reduction rates, Our reduction rate was 7085%
based on video length and content complexity, with
coverage (greater than 90) and perceptual quality
(PSNR =28.8-30.1 dB). Furthermore, Fig. 8 provides a
visual comparison between the original and
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Fig. 7. Comparison of video summarization results on IIT Hyderabad and UCF-Crime datasets. (a)
Reduction Rate (%) comparison on IITH and UCF-Crime datasets. (b) Other summarization metrics
showing diversity, clustering, coverage, and quality performance.

reconstructed frames. For normal traffic scenes, the
model produces reconstructions that are visually close
to the original frames, consistent with the high PSNR
values. In contrast, accident and abnormal frames
show noticeable distortion and blurring in the
reconstructed output, resulting in higher reconstruction
error. This behavior validates the effectiveness of the
reconstruction-based anomaly detection strategy,
where abnormal events naturally lead to higher error
and lower regularity scores. Together, these visual
results provide strong qualitative evidence that
supports the quantitative performance metrics and
confirms the model’s ability to both detect anomalies
and generate meaningful summaries under real-world
traffic conditions. Fig. 9(a) and 9(b) present the t-SNE
visualization of latent features extracted by the
proposed CVAE-ADS for the I[ITH and UCF-Crime
datasets, respectively. In both cases, normal and
accident frames form visibly distinct clusters, indicating
that the model has learned a well-structured latent
space. This clear separation directly supports the high

Table 5. Comparison of video summarization

metrics between the

IITH and UCF-Crime

datasets.
i UCF-Crime
Metric Hyderabad Dataset
Dataset
Reduction
Rate (%) 70-85% 70-80%
Diversity Rate
(1 - SSIM) 0.7249 0.70
Silhouette
Score (Latent 0.56 0.52
Space)
Coverage
Percentage 92.5% 90.0%
(%)
PSNR 30.1dB 28.8 dB
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Table 6. Comparison of state-of-the-art accident detection methods with the proposed CVAE-ADS Model.

AUC

EER

mAP

Detecti

Author(s) Learning Approach Dataset (%) (%) (%) on Rate FAR
Unsupervised
D. Singh . Denoising
etal. [12] Unsupervised Autoencoder + IITH 77 22.50 - - -
One-Class SVM
Srinivasan . DETR + Random o
etal. [13] Supervised Forest 82 - - 78.2% -
Retinex + :
Wanget o onised YOLOV3 + Online CCTV. g5 35 . . 925% 75
al. [14] - videos
Decision Tree
Khan et al. . CNN + Rolling VAID & Test o
[16] Supervised Prediction Dataset ) ) ) 88% )
60
Conv-AE + IITH 79 20.50 - -
Pawar et .
al. [17] Unsupervised  Seq2Seq LSTM
Autoencoder DOTA 8470 117 - - -
A.R.
Pathak et Supervised YOLOv2 + . IITH - - 76 - -
Transfer Learning
al. [18]
Thakare et Semi- Objectllnteraction UCF Crime 69.70 - - - 0.8
al. [19] Supervised + Refinement +
Heatmaps CADP 72.59 - - - 2.2
Adewopo . Lightweight 13D - Custom ) ) o )
etal.[20] SUPeVsed  TeonSTM2D Dataset 87 80%
Chauhan . Proposed CVAE- IITH 90.61 18.2 - - -
A et al. Unsupervised ADS
UCF-Crime 87.95 21.4 - - -

AUC values (90.61% for IITH and 87.95% for UCF-
Crime) and the strong silhouette scores reported in
Table 5, confirming that the learned representations
are both compact and discriminative. At the same time,
some overlap between clusters can still be observed in
complex lighting and heavy occlusion scenarios,
indicating a potential area for improvement through
explicit temporal modeling in future work. Additionally,
the output summaries generated from the selected
keyframes are illustrated in Fig. 10 (a) and 10 (b) for
both the IITH and UCF-Crime datasets, showcasing the
model’s ability to produce concise and representative
video summaries.

D. Comparative Analysis with State-of-the-Art

We evaluated our proposed CVE-ADS model against
existing methods for accident detection and video
summarization. Table 6 compares our offered CVAE-
ADS model with the current methods of accident
detection on various datasets. The model had a
significantly greater AUC of 90.61% on IITH and 87.95%

on UCF-Crime, and was better than prior choices of an
unsupervised method. CVAE-ADS is also more effective
in identifying rare accident cases without the use of
labelled anomaly information due to the combination of
convolutional feature representation and variational
learning. Though Wang et al. [14] mention a high AUC
of 96.32% with a supervised method that uses Retinex,
YOLOv3, and a decision tree, their approach is based
on the use of labelled data on accidents and the need to
optimize lighting conditions to fit CCTV cameras.
Conversely, CVAE-ADS operates in an unsupervised
fashion and does not need annotated data to be
available a priori, which makes it more scalable in real-
world applications. Compared to the other unsupervised
methods, such as Singh et al. [12] with 77% and Pawar
et al. [17] with 79% AUC on the IITH dataset, CVAE-
ADS is much better with a 90.61% AUC. This
advancement shows its capability to study the dynamics
of scenes involved in the complex scene and other
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Table 7. Comparison of proposed CVAF-ADS With state-of-the-art video summarization approaches

Reduction Diversity Coverage PSNR
Author(s) Approach / Model Dataset(s) Used Rate (%) Rate (%) (dB)
Thomas et Perceptual Video YouTube-8M, Used " N <
al. [7] Summarization Urban Tracker saliency
Kosambia Video Synopsis using
etal. [21] ResNet IITH x x x x
Pramanik et Z-STRFG: Spatio- YouTube8M,
temporal fuzzy Anomaly20, Urban x x x x
al. [22]
approach Tracker
Mehwish YOLOV5 + Privacy- .
Tahir et al. preserved Synthetic + Real- 42.97% x x x
o time Data
[23] summarization
Saxenaet  YOLOvS + Event-based Synthetic + Real o
al. [24] summarization Traffic Videos 20-50% ) X x
g\;zpéoz%ds Conv-VAE + Latent lITH, 70-85% 0.7249 92.5% 30.1
i - 1 - 0, o
Approach Space Clustering UCF-Crime 70-80% 0.70 90.0% 28.8

minute abnormalities that may be difficult to detect using
the manual.

The superior performance of the proposed CVAE-
ADS is largely attributed to its ability to learn a compact
and structured representation of normal traffic patterns
without relying on labeled accident data. Unlike
conventional autoencoders or CNN-based classifiers,
the variational formulation enforces regularization in
the latent space, enabling clearer separation between
normal and anomalous patterns. In addition, the
convolutional layers preserve spatial characteristics
such as vehicle structure and collision regions, which
are often lost in fully connected or handcrafted feature-
based methods. This architectural combination of
probabilistic modeling and spatial feature learning
enhances class separability, resulting in higher AUC
and lower EER on both the IITH and UCF-Crime
datasets, making the proposed approach more robust
and scalable for real-world traffic surveillance
applications. In terms of video summarization, our
method extracts keyframes that cover not only scene
variety but also critical accident moments. Compared
to most of the prior works concentrating on random or
uniform sampling, our approach can select frames not
only as representatives of scene diversity but also
enclosing critical accident moments. Here, we
compared its performance using the key evaluation
metrics with existing state-of-the-art summarization
techniques, as shown in Table 7. Experiments
demonstrate that the coverage and compression
efficiency of CVAE-ADS outperform existing
summarization methods. While methods like YOLO-
based summarization [23][24] achieve intermediate
reduction rates, they do not present detailed metrics,
e.g., diversity or coverage. On the other hand, CVAE-
ADS can achieve up to 85% reduction rates with 92.5%

of coverage, and we obtain strong diversity scores as
well that outperform previous works such as Thomas et
al. [7] and Pramanik et al. [22] that do not provide

Reconstructed

Original Reconstructed Reconstructed

Original

Original

(a)

Reconstructed

Fig. 8. Visual comparison between original and
reconstructed frames generated by the proposed
CVAE-ADS model. (a) Results on the IITH Dataset.
(b) Results on the UCF-Crime Dataset.

Original Reconstructed

comprehensive quantitative results. This demonstrates
the proposed approach for how it effectively produces
concise and informative summaries. The effectiveness
of the CVAE-ADS is also shown through the
comparison with existing approaches since it delivers a
good overall result in accident detection and video
summarization. Our model improves reduction rates
while demonstrating better coverage with diverse
keyframe selection without the need for labelled data.
The visualization of the clearly separate latent space
demonstrates that the model represents meaningful
scene dynamics successfully. Much existing research
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t-SNE of IITH Latent Features

(b)
Fig. 9. Latent Space Clustering via t-SNE for (a)
IITH Dataset and (b) UCF-crime Dataset

relies on synthetic datasets or fails to evaluate crucial
performance metrics. The proposed CVAE-ADS
model, evaluated on real-world datasets, proves to be
a scalable as well as practical solution for intelligent
traffic surveillance systems. Despite CVAE-ADS being
tested in an offline experimental environment, its
compact convolutional architecture and frame-by-
frame analysis can be used in real-time in the
conditions of real traffic surveillance. No complicated
object tracking or external detectors are necessary with
the model, reducing the computational overhead and
allowing faster inference with conventional GPU-
enabled monitoring systems. This enables the accident
occurrences to be identified in time, which is helpful for
the production of quick alerts to the traffic control rooms
and emergency response teams. Moreover, automatic
summarization of keyframes reduces the workload of
video inspectors, enabling authorities to assess the
extent of an incident within seconds and the context of
the situation to make decisions efficiently.

The existing CVAE-ADS framework mainly works
with single video frames, and it aims at learning spatial
representations of normal traffic scenes to detect
anomalies. Although this method is good at detecting
visually sudden and structural anomalies, it does not
directly model time-based dependence or dynamic
motion patterns of successive frames, which can be

informative in complex accident situations that have
slow transitions or dynamic effects. To overcome this
weakness, the proposed framework will be further
expanded in the future with the inclusion of the
temporal modeling mechanisms, including Long Short-
Term Memory (LSTM), Bidirectional Long Short-Term
Memory (BiLSTM), or 3D convolutional networks to
learn both spatial and temporal correlations in video
sequences. Such temporal components are predicted
to improve the detection of the subtle and time-varying
anomalies as well as the increased robustness of the
system in real-world traffic conditions. In addition, the
experiments presented in this study are limited to the
IITH and UCF-Crime datasets, which mainly consist of
fixed-angle CCTV footage captured in urban and
highway environments. These datasets do not fully
represent all real-world conditions, such as rural roads,
extreme weather, varying camera heights, wide-angle
lenses, or dense heterogeneous traffic patterns. As a
result, the model may encounter challenges when
deployed in unseen environments with significant
visual or contextual differences. Although the
unsupervised design improves adaptability, further
evaluation on more diverse and geographically
distributed datasets is necessary to strengthen the
model’s generalization capability.

V. Discussion

The experiments demonstrate that CVAE-ADS
provides a competitive and robust solution for both
accident detection and summarization in the context of
traffic surveillance systems. The reconstruction-based
anomaly scoring mechanism is able to recognize
abnormal frames with high accuracy, while the latent
space clustering approach retains the most informative
segments for efficient summarization. The following
discussion discusses how these findings relate to
existing literature, pointing out similarites and
contradictions, along with presenting current limitations
of the proposed system. Compared with previous deep
autoencoder-based anomaly detection frameworks
such as those reported in [12], CVAE-ADS achieves a
higher AUC, with an improvement of 13.6% on
average. This is mainly due to its probabilistic latent
modeling capability. Unlike stacked denoising
autoencoders learning deterministic embeddings, our
conditional latent space provides better separation
between normal and accident events. Unlike
approaches based on supervised learning or extensive
labeled datasets, as in [14], CVAE-ADS does not need
any manual annotations or pre-processing operations
like Retinex enhancement. Hence, its scalability and
applicability to  realistic  traffic  surveillance
environments significantly improve. Beyond [18], the
proposed approach outperforms a temporal CNN-
based architecture, which easily results in overfitting
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when trained with limited accident datasets. Moreover,
the reconstruction-driven anomaly metric of our
framework generalizes better to unseen scenarios.

Our results are consistent with findings in [22],
which emphasized that the latent-space structure is
critical for enhanced anomaly sensitivity in video
surveillance applications. As in their studies, we found
that latent-space clustering captures contextual
representations relevant to summarizing critical
frames.

However, our results run counter to detection-only
approaches using YOLO-based event localization
networks as in [23] and [24]. These supervised
detection systems tend to suffer from low-light
conditions, partial occlusion, and motion blur,
commonly occurring in traffic-camera videos. By
contrast, CVAE-ADS shows consistent detection
performance as the reconstruction error is inherently
less sensitive to illumination variations and does not
depend on explicit bounding-box predictions. Likewise,
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Fig. 10. Sample video summarization results generated by the proposed CVAE-ADS model. (a) IITH

accident dataset (b) UCF-Crime Dataset
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handcrafted-feature-based or purely motion-heuristic-
based methods, as in [26], fail to generalize well to
different accident types; our latent-space learning
approach captures subtle deviations of spatial—
appearance cues much better.

Despite its effectiveness, the CVAE-ADS
framework has certain limitations. The current
architecture, for starters, does not make use of explicit
temporal modeling mechanisms such as LSTM
networks, 3D CNNs, and transformer-based
architectures. Due to this, the sequential motion
dependencies between frames are not entirely
captured, which may result in failing to detect accidents
that evolve slowly or are subtle in nature. Moreover, the
model is sensitive to challenging environmental
conditions such as very low illumination, severe
occlusions, and camera shake that badly affect the
discriminative power of the reconstruction-based score
for anomaly detection. Additionally, the experimental
assessment is restricted to two benchmark datasets,
namely the IITH and UCF-Crime datasets, which
contain fixed-angle CCTV surveillance videos. As a
result, the model has not undergone validation on a
broad spectrum of scenarios, including drone-based
surveillance and multi-camera systems or wide-area
traffic ~ monitoring  environments.  While  the
computational efficiency of CVAE-ADS is promising,
we have yet to assess its real-time deployment on
embedded edge devices, resource-constrained
GPGPU platforms, or large-scale smart cities. In
conclusion, the existing framework does not include
mechanisms for dynamic adaptation to scenes and
domain transfer, which may lead to limitations in its
scalability and generalization when used in various
geographic, camera and traffic settings.

VI. Conclusion

In this work, we present CVAE-ADS, a lightweight,
unsupervised Conditional Variational Autoencoder—
based framework designed for effective accident
detection and video summarization in traffic
surveillance systems. The model consists of a two-
stage pipeline: i) reconstruction-based anomaly
scoring for accurate accident detection, and ii) latent-
space clustering for generating compact and
informative summaries that capture critical event
information. Experimental results on both the IITH
Accident Dataset and the Accident subset of UCF-
Crime demonstrate the superior performance of CVAE-
ADS against state-of-the-art methods. It achieved
93.5% accuracy and 90.61% AUC on the IITH dataset
and 87.95% AUC on the UCF-Crime dataset.
Furthermore, for video summarization, CVAE-ADS was
able to reduce the video length by 70-85% while
maintaining 92.5% coverage of accident-related
segments.

These results validate that CVAE-ADS can
effectively detect anomalies and generate short
summaries that greatly enhance the efficiency of post-
incident review, traffic monitoring, emergency
response workflows, and legal verification processes.
In future work, we would like to extend CVAE-ADS by
introducing temporal modeling using 3D-CNNs,
LSTMs, or transformer-based architectures to capture
more complex motion patterns and contextual cues
related to accidents. We also want to try GAN-
enhanced reconstruction, multi-camera fusion, and
deployment in large-scale real-world scenarios across
diverse and challenging traffic conditions to further
validate its generalization capability.
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