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Abstract Since it is a manual process of monitoring to identify accidents, it is becoming more and more 

difficult and results in human error, because of the rapid increase in road traffic and surveillance video. 

This underscores the urgent need for robust, automated systems capable of identifying accidents, as well 

as the burden of summarizing long videos. In order to address this issue, we propose CVAE-ADS, which is 

an unsupervised Approach that not only detects anomalies but also summarizes keyframes of a video to 

monitor traffic. This method operates in two phases. The stage of detecting Abnormalities intraffic video is 

performed using a Convolutional Variational Autoencoder, which operates on normal frames and identifies 

anomalies based on reconstruction errors. The second stage is the clustering of the perceived anomalous 

frames in the latent space, followed by the selection of representative keyframes to form a summary video. 

We tested the method with two benchmark datasets, namely, the IITH Accident Dataset and a subset of 

UCF-Crime. The findings have shown that the proposed approach had great accuracy of accident detection 

and AUC of 90.61 and 87.95 on IITH and UCF-Crime respectively and low rebuilding error and Equal Error 

Rates. To summarize, the method achieves substantial frame reduction and produces high visual quality 

with a wide variety of keyframes. It is able to measure up to 85 reduction rates with coverage of 92.5 on the 

IITH dataset and 80 reduction rates with coverage of 90 on an Accident subset of the UCF-Crime Dataset. 

CVAE-ADS offers a lightweight version of constant traffic monitoring, which utilizes limited organizational 

capital to categorize coincidences in real-time and recapitulate video footage of the accidents.  

Keywords Anomaly Detection, Video Summarization, Convolutional Variational Autoencoder, Latent 
Space Clustering   

I. Introduction  

The World Health Organization (WHO) report 
documented that 20-50 million damages or incapacities 
per year and about 1.19 million deaths are caused by 
traffic accidents. More than 90 per cent of road traffic 
deaths are registered in low and middle-income 
countries, and the lowest percentage in Europe. The 
death of individuals between the ages of 5 and 29 as a 
result of traffic injuries in the majority of cases. These 
collisions also have a huge financial cost, accounting 
for approximately 3 percent of the GDP of countries in 
lost productivity, medical expenses, and care costs. To 
address this, one of the United Nations stipulations is 
to reduce road traffic deaths and injuries by 50 percent 
by 2030 [1]. The United Nations has set a target to 
minimize these deaths and injuries by half in 2030. 
According to the Ministry of Road Transport and 
Highways (MoRTH) report, 4,61,312 accidents were 
reported in 2022, resulting in 4,43,366 serious injuries 

and 1,68,491 deaths, higher than the previous year [2] 
[3]. The majority of road accidents were a consequence 
of violation of traffic regulations, of which over-
speeding caused 1,19,904 deaths. The other 
significant violations included wrong-side driving, use 
of a mobile phone while driving, and driving under the 
influence of alcohol, and other violations, which further 
emphasize the significance of the violation of traffic 
regulations on the road. It is also worth mentioning that 
other roads had the highest numbers of accidents with 
39.4 percent, National Highways with 36.2 percent, and 
State Highways with 24.3 percent, hence the need to 
implement an alternative or efficient accident detection 
system [2]. As computer vision and DL methods have 
developed, Intelligent Transportation Systems (ITS) 
have brought about the booming development of video 
processing and given an urgent need to evaluate 
abnormal situations in video [4]. Surveillance videos 
provide anomalous event detection, which is regarded 
as the most complicated and difficult issue in the 
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context of computer vision and DL, with numerous 
areas of application in surveillance [5]. The masses of 
CCTV photographic cameras currently being 
developed in the public and private areas create the 
necessity of intelligent video monitoring. In this study, 
we have taken the idea of coincidence discovery as an 
anomaly detection problem, in which case accidents 
are viewed as an exceptional deviation of normal traffic 
patterns. Typically, conventional methods relying on 
handcrafted characteristics are not resistant and 
generalizable since lighting conditions or movement 
differ [10]. DL based models, including CNNs, LSTMs, 
GANs, and even autoencoders, are more effective at 
handling the problem of these conditions. Rather than 
manually designed features, it is able to automatically 
detect patterns in the data and address them 
effectively. It will render them more adaptive when 
dealing with various datasets.  

Most existing accident detection systems [13-16] 
[18-20] do not integrate detection and synopsis, which 
creates an overreliance on supervised algorithms and 
large-scale annotated datasets. It is very hard to 
acquire and annotate traffic accident data due to the 
unpredictability, the rarity, and the diverse 
environmental conditions in which traffic accidents 
occur. Supervised learning models trained on limited, 
scene-specific datasets often do not generalise to new 
traffic situations or to the photographic camera angles 
covered in the scenes they were trained on. 
Conversely, unsupervised methods learn normal traffic 
behaviour without any labelling information and detect 
abnormal behaviour as a deviation of the resulting 
model, providing enhanced scalability, flexibility, and 
usability in continuous surveillance scenarios where 
annotated accident videos are limited or unavailable. 
This poses challenges for real-time environment 
deployment, particularly in contexts with limited 
annotated accident datasets. Additionally, numerous 
approaches focus solely on detection. They do not offer 
succinct visual summaries for quick incident evaluation, 
reducing their practical usefulness for traffic 
management centres. 

Identifying abnormal accident incidents and the 
Condensation of significant frames are both very critical 
issues in traffic surveillance systems. It minimizes the 
use of manual video inspections, thereby enhancing 
quicker and more precise automatic identification of 
incidents, thereby refining road safety and emergency 
responses [8]. Due to the growing necessity of video 
Recapitulation, numerous approaches have been 
suggested to meet the numerous applications and 
supplies of the different learning techniques, including 
supervised, semi-supervised, unsupervised, and 
reinforcement learning [6] [9]. The vsLSTM [25] and the 
attention-based BiLSTM [27] are supervised learning 
methods that use labelled data to select the most 

meaningful frames. None of the techniques uses the 
less exact process of summarizing, although recent 
techniques implement spatial-temporal modelling and 
object tracking for the more specific task: DHAVS [28], 
and the YOLOv5-DeepSORT-SSD pipeline [29]. An 
example of such a model, like YOLOv8 [49] and 

YOLOv11 [50], is created to diagnose an accident with 

the help of a video recording of real traffic. 
Unsupervised techniques, in their turn, do not rely on 
labelled data. Instead, they are trained by statistical 
regularities or deep features, including object-level 
summarization using sparse LSTM autoencoders [30] 
or GAN-based models, including CNN Bi-ConvLSTM-
GAN [33]. Semi-supervised methods are a compromise 
between the two methods, involving both labelled and 
unlabelled data, e.g., VESD [36] and hierarchical RL 
systems, such as VDAN+ [37], to achieve an efficient 
sum-up at a lower cost. Reinforcement learning models 
are still described as sequential tasks based on 
rewards and optimizing on diversity and 
informativeness, e.g., Deep Summarization Network 
(DSN) [38], 3D Spatio-temporal U-Net [40], and PRLVS 
[41]. All these strategies emphasize the vitality of video 
summarization in dynamic and multifaceted 
substantial. 

Convolutional Variational Autoencoder (CVAE) has 
been adopted in this rather than an ordinary 
autoencoder or the traditional CNN due to the principal 
nature of the task of detecting accidents in surveillance 
video, which relies on the ability to model normal 
patterns and identify deviations of these patterns 
through reconstruction error [10, 42, 44].  In contrast to 
a traditional autoencoder, a VAE is trained to generate 
a probabilistic distribution of normal traffic patterns, 
continuity, and structure in the latent space are 
imposed through Kullback-Leibler divergence [42, 43]. 
Such property is necessary for anomaly detection, 
which allows better separation between rare abnormal 
events (accidents) and the learned normal behavior 
[45, 47, 48]. Additionally, integrating convolutional 
layers into the VAE preserves the spatial structure of a 
traffic scene, including lane structures, vehicle 
positions, and distortions caused by impacts [12]. Such 
spatial characteristics are normally sacrificed by fully 
connected autoencoder structures [10]. As a result, 
when an accident occurs, the CVAE produces 
significantly higher reconstruction errors, and thus, the 
reliability of anomaly scoring is increased [42, 44, 45]. 
Moreover, the structured latent space obtained by the 
CVAE provides a useful embedding, which can be 
further used to perform K-Means clustering, which 
underpins the proposed key-frame selection and 
summarization procedure [22, 30, 32]. 

This study aims to create and evaluate a lightweight, 
unsupervised framework that can detect traffic 
accidents and produce brief visual summaries in real-
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time from surveillance videos, eliminating the 
requirement for manual annotations. 

In this research, the proposed approach is designed 
and evaluated using real-world traffic surveillance 
videos obtained from fixed CCTV cameras installed at 
highways and urban intersections. The data sets used 
have diverse conditions such as variant lighting (day 
lighting, night lighting, early morning), traffic 
congestion, changing weather, and partial occlusions, 
hence, realistic traffic conditions. The current execution 
assumes a comparatively fixed camera angle and 
makes no specific allowances regarding dynamically 
tracking a photographic camera, aerial shots, or 
extreme unfavorable conditions, like heavy fog or storm 
events. Such restrictions identify possible ways of 
improving and expanding the proposed framework in 
the future. Specifically, the primary contributions of the 
given paper in the Accident detection and video 
summarization include:  

1. Convolutional-VAE Accident Discovery and 

Summarizer (CVAE-ADS) is a complete system that 

we are proposing to detect accidents based on 

reconstruction-driven anomaly scoring using a 

single convolutional variational autoencoder that is 

trained solely on normal traffic scenes.  

2. To decrease redundancy and emphasize important 

content, we fit a latent space clustering-based 

outline plan, which is effective in choosing 

keyframes of accidents as representatives to review 

the incident effectively. 

3. Our unsupervised learning-based approach 

requires no manual labelling, hence it is scalable for 

large surveillance networks at low cost. 

4. Moreover, the design is tailored for real-world 

oriented architecture and easily integrated into the 

traffic monitoring systems, which facilitate post-

processing tasks like emergency response, 

insurance verification, and legal accountability. 

The presented CVAE-ADS framework is feasible in the 
real world. Its lightweight, unsupervised nature enables 
integration into a real-time traffic monitoring system, 
enabling timely accident detection and concise 
summary generation without manual data labeling. The 
capabilities are particularly useful in traffic-intensive 
care facilities, emergency response, and insurance and 
litigation appraisal, as well as post-processing near-
miss incidents, where rapid and precise interpretation 
is essential. The following outlines the structure of the 
current article. Section II provides a complete analysis 
of related work, including traffic accident detection, 
video summarization, and the basic principles of 
Variational Autoencoders for anomaly 
detection.  Section III offers a comprehensive 
description of the proposed CVAE-ADS framework that 
encompasses architectural design, a two-stage 

processing pipeline, model components, and 
hyperparameter specifications. It also describes the 
datasets, evaluation metrics, and experimental set up 
used to evaluate accident detection and 
summarization. In Section IV, we will report and 
analyze the experimental results, including the 
accuracy of accident detection, the summarization 
effectiveness, the visual analyses, and the comparison 
against state-groups. Ultimately, Section V looks at 
some important observations, strengths, and 
limitations of the approach studied in this research 
paper. Meanwhile, Section VI tries to conclude the 
study and gives directions to future research and 
enhancements to this system.  

 

II. Related Work 

Various authors have proposed various approaches 
and techniques for recognizing or classifying accidents. 
In the related work, a review of various accident 
detection and video Summarization approaches is 
discussed. While video anomaly detection has been 
extensively addressed in literature, few works consider 
road-accident detection and video summarization in a 
single unified unsupervised framework. Lack of real-
world accident data for aviation, privacy concerns in 
surveillance, and high cost of annotating detailed data 
are all factors that hinder access to large datasets with 
task-specific focus. For this reason, this section offers 
a brief yet comprehensive review of works related to 
accident detection and video summarization, as direct 
or indirect anomaly detection issues in traffic situations. 

A. Related Work on Accident Detection 

Singh & Mohan [12] introduced an unsupervised 
method using Stacked Denoising Autoencoders and 
one-class SVM for accident detection, achieving 77.5% 
accuracy. Though effective in varied lighting, it 
struggles with occlusions, night scenes, and traffic 
complexity. Srinivasan et al. [13] proposed a road 
accident detection method combining DETR for object 
detection and a Random Forest Classifier for event 
prediction, achieving a 78.2% detection rate. While 
effective, DETR shows limitations in detecting small or 
low-visibility objects. Wang et al. [14] developed a 
vision-based crash detection framework for low-
visibility traffic scenes using Retinex for image 
enhancement, YOLOv3 for object detection, and a 
decision tree for classification. It achieved 92.5% 
accuracy with a 7.5% false alarm rate. Robles-Serrano 
et al. [15] suggested a DL architecture that uses CNN 
and LSTM to learn spatiotemporal features of accidents 
in traffic videos. Although it works well in diverse 
conditions, its performance declines in scenes of high 
traffic density. Khan et al. [16] applied CNN and rolling 
prediction in detecting the presence of an accident 
anomaly, where 82 percent was obtained, but the 
results decreased in foggy or remote scenes. Pawar et 
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al. [17] suggested a DL-based model in which they 
integrated a Convolutional Autoencoder and a 
Seq2Seq LSTM to describe spatiotemporal features of 
the accident. It scored 79% and 84.7% on the IITH 
dataset and DOTA, respectively, which is 11.7 times 
higher than that of any other unsupervised method.  
Pathak & Elster [18] proposed an accident detection 
model using YOLOv2 with transfer learning, trained on 
the UCF-Crime dataset and tested on the IITH dataset, 
achieving 76% mAP. 

An object interaction-based approach for accident 
detection, localization, and severity description, 
utilizing heatmaps and textual summaries, is proposed 
by Thakare et al. [19]. It achieved AUCs of 69.7% 
(UCF-Crime) and 72.59% (CADP), with low false alarm 
rates, showing competitive performance. Adewopo & 
Elsayed et al. [20] introduced a lightweight I3D-
CONVLSTM2D model that fuses RGB and optical flow 
for accident detection in smart city traffic videos, 
achieving 87% mAP and outperforming existing 
methods. While these techniques have improved 
accuracy using DL and object detection pipelines, there 
are still some issues. Many techniques rely on explicit 
object detection, handcrafted motion features, optical 
flow features, or predefined thresholds, which typically 
perform poorly in complex real-world scenarios such as 
occlusion, high vehicular density, low-lighting 
conditions, poor visibility due to adverse weather, and 
moving cameras. Furthermore, most techniques 
consider crash detection as a standalone activity and 
lack a holistic way to condense long-duration videos. 
This makes them less useful for real-time traffic 
surveillance and automatic crash detection in intelligent 
transportation systems. 

B. Related Work on Road Accident Video 
Summarization 

Research on road accident detection and 
summarization remains relatively limited, with most 
existing work focusing on general video summarization 
or traffic anomaly detection using traditional vision 
methods or DL models like CNNs. This article surveys 
a select set of studies specifically addressing accident-
focused video summarization. Thomas et al. [7] 
developed a perceptual video summarization method 
for accident detection using the YouTube-8M and 
Urban Tracker datasets, showing strong performance 
across metrics like saliency cost and detection rate. But 
it could only handle single-camera shots and was not 
able to differentiate collisions and near-collisions, 
which implies the necessity of depth-based 
segmentation. The article by Kosambia et al. [21] 
applied a video synopsis method to the IITH dataset to 
detect accidents with a ResNet, and ResNet-152 
performed best. They suggested parameter tuning, 
additional training data, and localization techniques to 
further enhance performance. Pramanik et al. [22] 
proposed Z-STRFG, a Z-number and spatio-temporal 
rough fuzzy granulation-based system on the 
YouTube8M, Urban Tracker, and Anomaly20 to detect 
anomalies and video summaries of traffic videos. It was 
more accurate and fast in the complex conditions, but 
was confined to monocular vision and had no 
multimodal support, which impacted the real-time 
applicability. 

Tahir et al. [23] proposed a privacy-preserving video 
summarization approach for accident detection using 
YOLOv5, trained on a synthetic dataset and tested on 
real-time data with 55–85% accuracy. Privacy is 
ensured through synthetic training data and video 
encryption, with summaries reducing duration by an 
average of 42.97%. Saxena et al. [24] employed 
YOLOv5 for accident detection and proposed event-
based video summarization to reduce surveillance data 

 
Fig. 1. An Architecture of a Variational Autoencoder 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1139
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 185-205                                        e-ISSN: 2656-8632 

 

Manuscript received 16 August 2025; Revised 10 November 2025; Accepted 20 December 2025; Available online 1 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1139 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 189               

storage. Trained on synthetic data and tested on real 
traffic videos, the approach effectively detected 
accidents and cut video length by 20–50%, improving 
storage efficiency. 

Although these studies demonstrate the need for 
summarization regarding video length and storage, it 
should also be noted that resolving object detection 
confidence, manual heuristics, and synthetic training 
data are all problems that must be addressed. These 
limitations stand to affect all generalizations involving 
uncontrolled, real world traffic systems. More than this, 
there are no systems that depend on the latent 
structure of the video to generate representative 
summaries coherently. Most of all, there is simply no 
attempt to present a separate, unified, and 
unsupervised architecture where accident detection 
and summary are treated as a singular, unified 
problem. 

C. Overview of Variational Autoencoder  

Variational Autoencoders (VAEs) are generative 
models that extend traditional autoencoders by 
encoding input data into a probabilistic latent space, 
enabling the generation of realistic and diverse 
samples. It is particularly effective for image generation 
and data compression, as well as in anomaly detection 
[42] [43]. Fundamentally, VAEs are based on deep 
neural networks, but they employ a Bayesian inference 
principle. A latent representation learned by VAEs is 
structured and continuous, which ensures that points in 
the latent space produce meaningful outputs when 
decoded. This allows VAEs to generate new data 
points by sampling them from the learned latent space 
[44]. 

Fig. 1 shows the architecture of a variational 
autoencoder, which consists of three key components: 
an encoder, a latent space, and a decoder. The 
encoder compresses input data into a latent 
representation by learning some parameters that 
define a probability distribution, usually a Gaussian. 
VAEs do not sample from these distributions directly. It 
uses a reparameterization trick that makes an entire 
model differentiable and thus trainable via 
backpropagation. A sample is drawn from the latent 
space and passed  to the decoder, which attempts to 
reconstruct the original input. The training process 
involves minimizing two losses: one that ensures the 
output closely matches the input, and another that 
regularizes the latent space to follow a known 
distribution, often a standard normal. This architecture 
enables VAEs to learn meaningful, structured data 
representations that are useful for generating new data 
samples and for anomaly detection.VAEs used in 
anomaly detection (particularly in tasks related to 
accident detection) are trained on normal traffic scenes 
only. They get to know how to recreate them. 
Nevertheless, under abnormal conditions such as 

accidents, the quality of reconstructions reduces, 
leading to an increase in reconstruction errors, which is 
an indication of anomalies. Learned latent features are 
also useful to give a summary of the scene, and these 
can be used to assist downstream tasks such as 
classification or keyframe extraction [44]-[47]. 

Most existing approaches come with significant 
challenges. Traditional models like SVMs and decision 
trees rely on handcrafted features and often fail in real-
world traffic due to occlusion, blur, or poor lighting. DL 
models, while more advanced, usually need large 
amounts of labelled data, which is both time-consuming 
and expensive to collect. On top of that, many of these 
models are too computationally heavy for real-time use. 
Even though the standard VAE, which is primarily used 
for representation learning and generative modeling, is 
directly applied in advanced traffic surveillance 
scenarios, it remains limited. in this research, we 
incorporate both VAE and convolutional architectures 
by employing additional layers and creating the 
Convolutional Variational Autoencoder-based accident 
detection and summarization (CVAE-ADS). Unlike all 
other approaches, where detection and summarization 
are considered as independent processes, our system 
utilizes the learned latent distribution not only for highly 
efficient normal-accident pattern discrimination but also 
for latent clustering-based keyframe extraction, which 
we believe is a novel approach. This fully integrated, 
self-organizing system has a low annotation effort 
requirement, is robust under various traffic conditions, 
and has the ability to create efficient and meaningful 
summaries for quick incident analysis. 

 

III. Methodology 

As simple frame reconstruction is made possible in 
traditional methods such as PCA or sparse coding, it is 
not usually sufficient to analyze complex spatial 
patterns and the overlaying structure of video scenes 
in the real world. video scenes. Overall, such forms of 
linear methods are unable to receive the richer spatial 
context, and it is difficult to identify subtle anomalies 
that are not just pixel differences. Instead, our 
proposed CONV-VAE model utilizes deep 
convolutional encoders, which can learn rich multi-level 
features as well as a probabilistic latent space that 
recognizes the nuanced irregularities in a better way 
from the traffic videos. This approach not only improves 
anomaly detection but also provides meaningful video 
summarization that conventional approaches are not 
designed to handle. 

A. Overview of CVAE-ADS 

The proposed CVAE-ADS approach is a two-stage 
framework that efficiently detects accidents and 
summarizes key frames from traffic surveillance 
videos. Initially, the Convolutional Variational 
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Autoencoder (CVAE) is trained only on normal traffic 
scenes. During the testing phase, the model 
reconstructs normal frames very well; but does not 
reconstruct the accident frames correctly, which in 
turns to high reconstruction errors. This error is then 
used for reconstruction-based anomaly scoring, where 
higher reconstruction error indicates a greater 
likelihood that the frame is anomalous (i.e., contains an 
accident). These values are converted into regularity 
scores, where lower scores represent a higher degree 
of abnormality and therefore a higher confidence of an 
accident occurrence.  

   In the second stage, the internal compressed latent 
features generated by the proposed CVAE from 
detected anomalous frames are extracted. These latent 
features, often referred to as the latent space, encode 
compact, meaningful information about the visual 
content of each frame. To group visually similar 
accident frames and remove redundancy, these latent 
vectors are clustered using the K-Means algorithm. 
This process, referred to as latent space clustering, 
groups frames with similar visual characteristics into 
distinct clusters. From each cluster, a representative 
frame is selected as a keyframe. These selected 
keyframes are then arranged chronologically, are 
compiled into a short video that highlights key moments 
of the incident, supporting quick review and analysis. 
Fig. 2 presents the process flow diagram of the 
proposed CVAE-ADS. 

B. Model Architectures 

The suggested model combines a Convolutional 
Autoencoder (CAE) with a Variational Autoencoder 
(VAE) with the encoder being created to remove the 
hierarchical spatial features of traffic frames with the 
help of convolutional operations and nonlinear 
activations and progressive down sampling. The mean 
and log-variance are parameterized by separate dense 
layers to permit sampling the latent space 
stochastically using the reparameterization trick. The 
decoder mirrors the encoder using deconvolutional and 
up-sampling to reconstruct the input frames. This 
design allows the model to effectively learn the 
distribution of normal traffic patterns and generate 
accurate reconstructions, making it suitable for 
unsupervised anomaly detection. Fig. 3 shows details 
of the internal architecture of the Convolutional 
Variational Autoencoder used for accident detection 
and video summarization. 

C. Model Architectures and Hyperparameter 

Specifications 

Table 1 shows the Hyperparameter and Architecture 
Specifications of the proposed CVAE-ADS. Each video 
frame is resized to 128 × 128 × 3 before being passed 
into the CVAE encoder. The encoder is composed of 
multiple convolutional layers (Conv2D) with increasing 

filter sizes (32, 64, and 128) and ReLU activation, 
followed by max-pooling to progressively reduce spatial 
dimensions while preserving essential visual 
information. The resulting feature maps are flattened 
and connected to a dense layer, from which two parallel 
layers estimate the mean (μ) and standard deviation (σ) 
of the latent distribution. A latent vector z is then 
sampled using the reparameterization trick. 

   The decoder mirrors the encoder structure and 
reconstructs the input frame by applying a dense layer, 
followed by up-sampling, and convolution operations to 
progressively restore the spatial resolution. The final 

layer uses a Sigmoid activation to generate the 
reconstructed frame matching the original input size. 
The model is trained using the Adam optimizer with a 
learning rate of 0.0001, a batch size of 64, and 100 
training epochs. The total loss combines the mean 
squared reconstruction error with the Kullback–Leibler 
divergence, allowing the CVAE to learn a compact 
representation of normal traffic patterns and to detect 
accidents through increased reconstruction error 
during testing. 

 
Fig. 1. Process flow diagram showing the two-
stage 

 pipeline of CVAE-ADS. 
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Table 1. Hyperparameter and Architecture 
Specifications of CVAE-ADS 

Component Specification 

Input size 128 × 128 × 3 

Conv1 
32 filters, 3×3, ReLU + 

MaxPooling 

Conv2 
64 filters, 3×3, ReLU + 

MaxPooling 

Conv3 
128 filters, 3×3, ReLU + 

MaxPooling 

Dense (encoder) 128 units 

Latent dimension (z) 64 

Decoder input 
reshape 

16 × 16 × 128 

Deconv layers 
128 → 64 → 32 → 3 

filters 

Output activation Sigmoid 

Optimizer Adam 

Learning rate 0.0001 

Batch size 64 

Epochs 100 

Loss function MSE + KL Divergence 

D. Training Protocol and Implementation Details 

The proposed CVAE-ADS framework is trained in an 
unsupervised manner using only normal traffic frames. 
Prior to training, all input frames are resized to 128 × 
128 × 3 and normalized to the range [0, 1]. The model 
is optimized using the Adam optimizer with a learning 
rate of 0.0001 and a batch size of 64. Training is 
performed for a maximum of 100 epochs. The objective 
function is defined as a weighted combination of the 
mean squared reconstruction loss (MSE) and 
Kullback–Leibler (KL) divergence, where the 
reconstruction term penalizes pixel-level differences 
between the input and reconstructed frames, and the 
KL term regularizes the latent distribution towards a 
standard normal distribution. A 30% validation split is 
used during training to monitor generalization. To 
prevent overfitting and ensure stable convergence, 
early stopping is applied with a patience of 10 epochs, 
and the best-performing model weights are restored 
automatically. Network convergence is determined by 
the stabilization of both the training and validation loss 
curves. 

E. Convolutional - VAE for Anomaly Detection 

The proposed CVAE-ADS framework leverages a 
Convolutional Variational Autoencoder (CVAE) to 
detect anomalies in traffic video frames. After standard 
preprocessing and normalization (as described in 

Section D), each video frame is fed into the CVAE 
encoder for anomaly modelling. The encoder is a stack 
of multiple convolutional layers with ReLU activations 
that are progressively reduced in size by max-pooling, 
while preserving spatial hierarchy. The input frame x ∈
R𝐻×𝑊×𝐶 pass to the encoder, which transforms it into a 

latent representation z ∈ R𝑑, through a series of 

transformations. This introduces stochasticity in the 
latent space using a Variational Autoencoder (VAE) 

framework, where it learns a mean μ ∈ R𝑑 and a 

standard deviation σ ∈ R𝑑 from the encoded features 

are calculated using Eq. (1) [35]: 
                      μ = 𝑓μ(𝑥),  log σ2 = 𝑓σ(𝑥)               (1)                                                                   

A sample latent vector z using the reparameterization 

trick is as shown in Eq. (2) [35]: 

                       z = μ + σ ⊙ ϵ,  ϵ ∼ 𝒩(0, 𝐼)             (2) 

This also allows for gradient-based optimization as well 
as introducing stochasticity into the latent space. The 
decoder takes the latent vector and reconstructs the 
input frame 𝑥̂ = 𝑔(z), trying to replicate the original 

frame using transposed convolutional layers. CVAE 
(Convolutional Variational Autoencoder) minimizes a 
combined loss which contains two components: 
Reconstruction loss that measures how well the model 
can reproduce the original input using Eq. (3) [42]: 

  ℒ recon =
1

𝑁
∑ |𝑁

𝑖=1 𝑥𝑖 − 𝑥𝑖̂|
2 × 𝑁 = ∑ |𝑁

𝑖=1 𝑥𝑖 − 𝑥𝑖̂|
2(3) 

Kullback-Leibler Divergence calculated using Eq. (4) 
[35] Regularizes the latent space by encouraging the 
approximate posterior to match the standard normal 
distribution:  

        ℒKL = −
1

2
∑ (1 + log(σ𝑖

2) − μ𝑖
2 − σ𝑖

2)𝑑
𝑖=1       (4)                               

The total loss encourages the model to accurately 
reconstruct input images while enforcing a regularized, 
continuous latent space for improved generalization in 
Eq. (5) [43]: 

                 ℒ CVAE = 𝐸𝑥∼𝑝dt
[ℒ recon + ℒKL]               (5)    

After training on normal traffic frames, the model is 

evaluated on test frames. For each frame 𝑥j , the 

reconstruction error 𝐸𝑥𝑗
 is computed using the mean 

squared error as in Eq. (6) [35]: 

      𝐸𝑥𝑗
=

1

𝐻𝑊𝐶
∑ (𝑥𝑗(ℎ, 𝑤, 𝑐) − 𝑥𝑗̂(ℎ, 𝑤, 𝑐))

2

ℎ,𝑤,𝑐            

(6)                        

To interpret reconstruction errors as anomaly 
likelihood, the errors are scaled into regularity scores 

𝑅(𝑥𝑗)∈[0,1], where higher scores indicate stronger 

similarity to normal data and lower scores suggest 
anomalies. The regularity score is computed as in Eq. 
(7) [35,36]: 

          𝑅(𝑥𝑗)  =  1  −  
𝐸𝑥𝑗

−  min(𝐸) 

max(𝐸) −  min(𝐸)  + 𝜖
          (7)                          

Here, min(𝐸)   and max(𝐸) are the minimum and 

maximum reconstruction errors computed over the 
entire test set. 𝜖 is a small positive constant added for 
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numerical stability. Based on these scores, a binary 
classification is performed using a threshold 𝜏 to 

distinguish normal from anomalous events as in Eq. (8) 
[37]: 

                         𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑥𝑗) = {
 1
 0

,         
𝑖𝑓  𝑅(𝑥𝑗)<𝜏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
(8) 

To determine an appropriate threshold 𝜏 in Eq. (9) [42], 

we adopt a statistical thresholding approach based on 
the distribution of reconstruction errors on normal data:    

                                   𝜏 = μerr + 2 ⋅ σerr                      (9)                   
Here, 𝜇err and  𝜎err are the mean and standard 

deviation of reconstruction errors from the normal 
training set. This approach assumes that normal 
instances are well reconstructed, while anomalies 
exhibit higher reconstruction errors and consequently 
lower regularity scores. The selected threshold 
𝜏 directly influences the trade-off between false 

positives and false negatives. A lower threshold value 
may classify more frames as anomalous, increasing 
recall but potentially reducing precision due to higher 
false positive rates. Conversely, an increased threshold 
will lead to more conservative detection, which will 
increase precision and may overlook subtle accident 
events, which will reduce recall. The 2 ⋅ 𝜎err  value was 

selected empirically in this publication to provide a 
balanced trade-off between accuracy and recall, as 
shown in the published evaluation measures. To further 
prove the choice of the best threshold, a sensitivity 
analysis was made by changing the scaling factor of 
the standard deviation of the reconstruction errors. 
Thresholds in the range of μerr + 1.5 ⋅ σerr to μerr + 3 ⋅
σerr were evaluated on the validation set. Lower values 

favored higher recalls at the cost of increased false 
positives, while higher values improved precision but 
missed subtle anomalies. The threshold of μerr + 2 ⋅ σerr 

consistently provided the best balance, achieving the 
highest F1-score and a stable trade-off between 
precision and recall. Therefore, this value was selected 
for all experimental evaluations. 

F. Latent Space Clustering for Summarization 

Once the frames of interest regarding an accident have 
been identified through the anomaly detection pipeline, 
a process of summarization goes into effect to create a 
concise yet informative summary of the video. This is 
done through the exploitation of the latent embeddings 
retrieved by the Conv-VAE that captures high-level 
structural features when projected to a reduced-
dimensional space. Let the sequence of input video 
frames be denoted as {x₁, x₂, ..., xt} where each frame 

xt ∈ R𝐻×𝑊×𝐶 represents the video frame at time t. These 

frames are mapped to latent space using the encoder 

function fenc as in Eq. (10) [37]: 

                           zt = fenc(xt), for t = 1, ..., T             (10) 

Here, zt ∈ Rᵈ denotes the d-dimensional latent 

embedding for frame xt. To capture the diversity of 

visual content, the latent representations {z1, z2, … , 
zT} are clustered using the K-Means. The objective of 

clustering is to partition the latent space into clusters 

{c1, c2, … , ck} by minimizing the intra-cluster 

variance as follows in Eq. (11) [37]: 

                  𝑚𝑖𝑛
       {𝜇𝑘} 𝑘=1

𝐾
∑ ∑ ||𝑧 − 𝜇𝑘||

2
𝑧∈𝐶𝑘

𝐾
 𝑘=1        (11) 

where μₖ is the centroid of the cluster 𝐶𝑘. The number 
of clusters 𝐾 determine the level of summarization and 

is chosen empirically based on the desired granularity. 
From each cluster 𝐶𝑘, a representative keyframe is 

selected by identifying the latent point 𝑧𝑘
∗ ∈ 𝐶𝑘 in Eq. 

(12) [35,37] that lies closest to the cluster centroid 𝜇𝑘: 

𝑧𝑘
∗ = arg min

𝑧∈𝐶𝑘
||𝑧 − μ𝑘||

2
                         (12) 

The corresponding input frame 𝑥𝑘
∗  is then designated 

as the keyframe for cluster 𝐶𝑘. This ensures that the 

selected keyframes are structurally representative of 
their respective visual contexts within the video. In this 
work, the number of clusters 𝐾 is not fixed arbitrarily, 

but it is selected empirically based on the distribution 
and diversity of the accident-related frames in each 
video. Since the primary objective is video 
summarization rather than fine-grained classification, a 
relatively small and compact value of K is preferred in 

order to avoid unnecessary fragmentation of similar 
events. To ensure that the selected value of 
𝐾 produces meaningful and well-separated clusters, 

and silhouette analysis is used as a cluster validation 
technique. The silhouette score measures the similarity 
of a frame’s latent representation to its own cluster 
compared to other clusters. Higher silhouette values 
indicate better cluster compactness and separation. 
The value of 𝐾 that maximizes the average silhouette 

score is chosen as the optimal number of clusters for 
that video sequence.  This adaptive selection strategy 
ensures that the resulting clusters exhibit strong 
compactness and separation, leading to representative 
and non-redundant keyframes in the final summary. To 
eliminate redundant frames that may carry visually 
similar content, pairwise structural similarity is 
computed between candidate keyframes using the 
Structural Similarity Index (SSIM) in Eq. (13) [35,37]: 

SSIM(𝑥𝑖 , 𝑥𝑗) =
(2μ𝑖μ𝑗+𝐶1)(2σ𝑖𝑗+𝐶2)

(μ𝑖
2+μ𝑗

2+𝐶1)(σ𝑖
2+σ𝑗

2+𝐶2)
        (13)  

where 𝜇𝑖, 𝜎𝑖
2, and 𝜎𝑖𝑗 denote the mean, variance, and 

covariance of pixel intensities in grayscale images  𝑥𝑖 

and 𝑥𝑗, respectively. As a way of limiting repetition in 

time and to enhance processing power, frames whose 
Structural Similarity Index (SSIM) is greater than a 
predetermined value are deemed visually redundant 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1139
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 185-205                                        e-ISSN: 2656-8632 

 

Manuscript received 16 August 2025; Revised 10 November 2025; Accepted 20 December 2025; Available online 1 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1139 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 193               

and are not processed any further. The last summary 
video was assembled by arranging the chosen 
keyframes in chronological sequence and assembling 
them with a frame rate of 5 frames per second to 
facilitate qualitative analysis.  
G. Dataset Discussion 

The dataset to be applied in this research is the IITH 
road accident dataset, which was gathered through the 
CCTV surveillance system in Hyderabad City, India. In 
both video clips, the timing starts a few minutes prior to 
the event that an accident takes place and extends 
several minutes after [12]. There was a total of 94, 720 
normal frames used in training, with 33,280 frames 
used in testing, consisting of 32,417 normal frames and 
863 accident frames. Fig. 4 gifts displays sample 
records from the IITH data. UCF-Crime dataset is a 
massive video anomaly detection benchmark with 13 
categories of real world incidents. In this case, we 
narrowed our research to the road accident subset, 
consisting of 150 CCTV videos obtained at varying 
times of day and night conditions, and with varying 
background scenes. Out of these, 127 were used for 
training and 23 for testing [48]. The dataset also has a 
high number of normal videos, and they can be well 
trained in one-class anomaly detection models.  

H. Evaluation Metrics 

In this section, we provide the evaluation metrics for our 
proposed Conv-VAE-based framework, both in the 
accuracy of the accident detection task and the 
keyframe summarization method. To determine the 

performance of Accident detection and latent 
clustering-based analysis of summarization, we used 
quantitative measures. The evaluation metric was 
chosen to capture both technical and practical 
performance of the surveillance systems in traffic. 
Although accuracy is limited to overall correctness, it is 
insufficient when there is an imbalance, as in accident 
detection. Accuracy is thus applied in order to decrease 
false alarms and recall to guarantee that real accidents 
are not overlooked. The F1-score offers a moderate 
perspective of both. The AUC shows that the model is 
capable of making a distinction between normal and 
accident frames according to the distribution of 
reconstruction scores, whereas the EER demonstrates 
the compromise between false positives and false 
negatives.  

To be able to summarize, PSNR measures the 
quality of reconstruction, making sure that the normal 

 
Fig. 4. Sample video frames from IITH Dataset. 
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Fig. 3. Detailed architecture of the Convolutional Variational Autoencoder used for accident detection 
and video summarization.  
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patterns are learned correctly and that the accident 
frames result in more reconstruction errors. The rate of 
reduction indicates the level at which the video is 
condensed, and it is significant with regard to time and 
storage. The diversity rate (1 -SSIM) is used to 
guarantee that the keyframes used are not duplicates 
in terms of visual appearance. The silhouette score is 
used to describe the quality of clustering, which is 
based on the ability of the frames to cluster well in the 
latent space. The percentage of coverage ensures that 
the significant portions of the chain of accidents are not 
overlooked. Combined, these measurements indicate 
that the produced summaries are small, informative, 
and applicable to the real world, such as traffic 
monitoring, incident review, and emergency analysis.  

1. Accident Detection Metrics 

In an effort to assess the model in terms of 
distinguishing the accident and the normal frames, we 
utilized standard classification measures. Accuracy 
indicates the general percentage of correctly identified 
frames. Precision is the measure of the number of  
predicted frames which are really accidents and recall 
the number of actual accidents which have been 
identified [11]. F1-score is a harmonic mean of 
precision and recall, which offers a balanced index 
when the false positives or false negatives are both of 
interest [11]. We would also take the Equal Error Rate 
(EER) that is the error rate at which the false positive 
rate is the same as the false negative rate and this 
provides information on the trade-off between the two 
errors that the model can make. The curve of the ROC 
indicates the level at which the model distinguishes 
between accident and normal frames by displaying the 
true positive rate and false positive rate at different 
thresholds. This performance is summarized in the 
AUC score; the higher the value, the closer it 
approaches 1, the higher the performance in 
differentiating the two classes. 

2. Latent Space Clustering-Based Summarization 

Evaluation 

In order to extract important events in the sequence of 

accidents, we use clustering on the latent space of the 

trained Conv-VAE. The evaluation will be a 

combination of quantitative and qualitative analysis to 

make the summaries small, varied and representative. 

   A formal user study was not carried out in this work, 

but the chosen metrics of summarization are aimed at 

their close reflection in human perception of a good 

summary. Quantitatively, the rate of reduction is used 

to evaluate the compactness, and the diversity rate (1 

− SSIM) is used to evaluate visual diversity among 

selected frames. The silhouette score, which is 

computed on original latent representations, is used to 

assess the quality of clustering, as well as aid in the 

decision of an acceptable number of clusters. The 

percentage coverage guarantees that the chosen 

frames will cover the whole temporal range of the 

incident. Also, PSNR is used to determine the visual 

fidelity of reconstructed frames by evaluating the pixel-

by-pixel similarity of the reconstructed images to the 

original images. On the qualitative level, we make use 

of t-SNE-based latent space visualization to visualize 

the segregation and classification of accident and 

normal frames intuitively, which justifies the utility of our 

summarization strategy. A combination of these 

measures would give an approximation of what the 

human would consider a summary, as far as 

completeness, conciseness, and informativeness. The 

good qualitative correspondence between these 

quantitative findings and the visual summaries also 

justifies the usefulness of the proposed approach that 

can be applied in practice. 

 

IV. Results 
This section presents the outcomes regarding our 

accident detection and video summarization model, 

built using a latent space clustering approach with a 

Conv-VAE model. 

A. Accident Detection Performance 

In this subsection, we will emphasize the results of our 
model of accident detection using the Conv-VAE 
architecture on the IITH Accident Dataset and the UCF-
Crime road-accident subset. Even though we train our 
model in an unsupervised fashion and only use normal 
frames in the training process, we manually annotated 
video frames of the IITH dataset with the characteristics 
of a normal or an accident to facilitate a quantitative 
analysis. We therefore report on key performance 
indicators, such as F1-score, accuracy, precision, 
recall, AUC, and Equal Error Rate (EER). Conversely, 
the UCF-Crime dataset contains the temporal 
annotations, which are predefined and show that there 
are some anomalous events in each video segment, 
which can be road accidents. This dataset therefore 
does not require manual labelling. These annotations 
allow one to directly and consistently assess the 
detection abilities of the model on unconstrained video 
data of the real world. Table 2 shows some important 
performance measures of the model, such as 
Accuracy, Precision, Recall, F1-Score, AUC, and EER. 
Fig. 5 provides a visual comparison of these 
performance metrics across both datasets, clearly 
illustrating the effectiveness of our approach across 
different data sources. Additionally, the Receiver 
Operating Characteristic (ROC) curves for both (a) the 
IITH dataset and (b) the UCF-Crime dataset are shown 
in Fig. 6, offering further insight into the model's 
discriminative capabilities. A short examination of the 
erroneously classified frames reveals that false 
positives are mostly found in sudden but not accidental 
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visual events such as sudden braking,sharp lane turns, 
and heavy occlusions, which enhance the error in 
reconstruction and reduce accuracy (0.874 and 0.845 
in IITH and UCF-Crime, respectively). False negatives, 
on the other hand, are largely due to small or far 
collisions and low visibility (e.g., low light or motion 
blur), which yields low recall values of 0.801 (IITH) and 
0.768 (UCF-Crime).  
        These results suggest that CVAE-ADS is useful in 
identifying visually salient accidents but might fail to 
pick up finer details, which implies that the use of a 
temporal model and attention could help to enhance 
performance. To assess the stability of the proposed 
CVAE-ADS framework, all the experiments were run 
repeatedly with various random initializations as 
demonstrated in Table 3. The results reported on the 
performance metrics are the average values 
throughout these runs, as well as standard deviations. 
The differences in AUC and F1-score were also not 
very significant (within +1-2 percent), and this implies 
that the model gives consistent and reliable results 
every time it is run. This proves that the reported 
performance is not an outcome of random chance, and 
it shows the strength of the suggested course of action. 
Since these metrics capture overall model behavior, 

variability is reported only for Accuracy, AUC, and F1-
score, while the remaining metrics showed consistent 
trends across runs. 

B. Threshold Sensitivity Analysis 

To further examine the influence of the reconstruction 
error threshold on detection performance, a sensitivity 
analysis was conducted by varying the threshold from 

μerr + 1.5 ⋅ σerr to μerr + 3 ⋅ σerr. The corresponding 

changes in Precision, Recall, and F1-score are 
reported in Table 4. As shown, the threshold of μerr +
2 ⋅ σerr achieves the most balanced trade-off between 

false positives and false negatives and is therefore 
selected for all final evaluations. 
C. Latent Space-based Video Summarization 

Performance 

This section is a report of the findings of our keyframe 
summarization process, as is presented in Table 5. The 
latent space clustering performance is demonstrated 
by the performance of the latent space clustering on 
summarizing diverse and concise summaries. The 
approach was evaluated on the IITH and UCF-Crime 
datasets to confirm its effectiveness. Fig. 7 summarizes 
the relative results of our summarization measures on 
both datasets and demonstrates that the proposed 
diversity, and coverage. The performance of video 
summarization usually differs depending on the 
sequences based on the duration of the sequences, 
movement, and events. CVAE-ADS model preserves 
high reduction rates, Our reduction rate was 7085% 
based on video length and content complexity, with 
coverage (greater than 90) and perceptual quality 
(PSNR = 28.8-30.1 dB). Furthermore, Fig. 8 provides a 
visual comparison between the original and 

 
Fig. 5. Sample video frames from IITH Dataset. 

 

 

 

 

 

Table 2. Performance comparison of the 
proposed method on the IIT Hyderabad and UCF-
Crime datasets. 

Metric IIT 
Hyderabad 

Dataset 

UCF-Crime 
Dataset 

Accuracy 93.5% 91.2% 

Precision 0.874% 0.845% 

Recall 0.801% 0.768% 

F1-Score 0.836% 0.804% 

AUC  0.9061 0.8795 

EER  18.2% 21.4% 

 

Table 3. Performance Stability of CVAE-ADS 
Across Multiple Runs 

Metric 
IITH (Mean ± 

Std) 
UCF-Crime 

(Mean ± Std) 

Accuracy 93.5 ± 0.8 91.2 ± 1.1 

AUC 90.61 ± 1.02 87.95 ± 1.28 

F1-score 0.836 ± 0.03 0.804 ± 0.04 

 

Table 4. Comparison of model performance 
metrics across different statistical threshold 
levels. 

k value Threshold Precision Recall 
F1-

score 

1.5 μ + 1.5σ 0.74 0.86 0.79 

2.0 μ + 2σ 0.87 0.80 0.83 

2.5 μ + 2.5σ 0.91 0.71 0.80 

3.0 μ + 3σ 0.95 0.62 0.75 
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reconstructed frames. For normal traffic scenes, the 
model produces reconstructions that are visually close 
to the original frames, consistent with the high PSNR 
values. In contrast, accident and abnormal frames 
show noticeable distortion and blurring in the 
reconstructed output, resulting in higher reconstruction 
error. This behavior validates the effectiveness of the 
reconstruction-based anomaly detection strategy, 
where abnormal events naturally lead to higher error 
and lower regularity scores. Together, these visual 
results provide strong qualitative evidence that 
supports the quantitative performance metrics and 
confirms the model’s ability to both detect anomalies 
and generate meaningful summaries under real-world 
traffic conditions.  Fig. 9(a) and 9(b) present the t-SNE 
visualization of latent features extracted by the 
proposed CVAE-ADS for the IITH and UCF-Crime 
datasets, respectively. In both cases, normal and 
accident frames form visibly distinct clusters, indicating 
that the model has learned a well-structured latent 
space. This clear separation directly supports the high 

Table 5. Comparison of video summarization 
metrics between the IITH and UCF-Crime 
datasets. 

Metric 

IIT 
Hyderabad 

Dataset 

UCF-Crime 
Dataset 

Reduction 
Rate (%) 

70-85% 70–80% 

Diversity Rate 
(1 − SSIM) 

0.7249 0.70 

Silhouette 
Score (Latent 

Space) 
0.56 0.52 

Coverage 
Percentage 

(%) 
92.5% 90.0% 

PSNR 30.1 dB 28.8 dB 

 

 
(a)                                                                         (b) 

Fig. 6. ROC curves for the proposed accident detection model on (a) the IITH Dataset and (b) the UCF-
Crime Dataset. 

 

 

 

 
                                                (a)                                                                        (b) 
Fig. 7. Comparison of video summarization results on IIT Hyderabad and UCF-Crime datasets. (a) 
Reduction Rate (%) comparison on IITH and UCF-Crime datasets. (b) Other summarization metrics 
showing diversity, clustering, coverage, and quality performance. 
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AUC values (90.61% for IITH and 87.95% for UCF-
Crime) and the strong silhouette scores reported in 
Table 5, confirming that the learned representations 
are both compact and discriminative. At the same time, 
some overlap between clusters can still be observed in 
complex lighting and heavy occlusion scenarios, 
indicating a potential area for improvement through 
explicit temporal modeling in future work. Additionally, 
the output summaries generated from the selected 
keyframes are illustrated in Fig. 10 (a) and 10 (b) for 
both the IITH and UCF-Crime datasets, showcasing the 
model’s ability to produce concise and representative 
video summaries. 

D. Comparative Analysis with State-of-the-Art 

We evaluated our proposed CVE-ADS model against 
existing methods for accident detection and video 
summarization. Table 6 compares our offered CVAE-
ADS model with the current methods of accident 
detection on various datasets. The model had a 
significantly greater AUC of 90.61% on IITH and 87.95% 

on UCF-Crime, and was better than prior choices of an 
unsupervised method. CVAE-ADS is also more effective 
in identifying rare accident cases without the use of 
labelled anomaly information due to the combination of 
convolutional feature representation and variational 
learning. Though Wang et al. [14] mention a high AUC 
of 96.32% with a supervised method that uses Retinex, 
YOLOv3, and a decision tree, their approach is based 
on the use of labelled data on accidents and the need to 
optimize lighting conditions to fit CCTV cameras. 
Conversely, CVAE-ADS operates in an unsupervised 
fashion and does not need annotated data to be 
available a priori, which makes it more scalable in real-
world applications. Compared to the other unsupervised 
methods, such as Singh et al. [12] with 77% and Pawar 
et al. [17] with 79% AUC on the IITH dataset, CVAE-
ADS is much better with a 90.61% AUC. This 
advancement shows its capability to study the dynamics 
of scenes involved in the complex scene and other 

Table 6. Comparison of state-of-the-art accident detection methods with the proposed CVAE-ADS Model. 

Author(s) Learning Approach Dataset 
AUC 
(%) 

EER 
(%) 

mAP 
(%) 

Detecti
on Rate 

FAR 

D. Singh 
et al. [12] 

Unsupervised 

Unsupervised 
Denoising 

Autoencoder + 
One-Class SVM 

IITH 77 22.50 - - - 

Srinivasan 
et al. [13] 

Supervised 
DETR + Random 

Forest 
 82 - - 78.2% - 

Wang et 
al. [14] 

Supervised 
Retinex + 
YOLOv3 + 

Decision Tree 

Online CCTV 
videos 

96.32 - - 92.5% 7.5 

Khan et al. 
[16] 

Supervised 
CNN + Rolling 

Prediction 
VAID & Test 

Dataset 
- - - 88% - 

Pawar et 
al. [17] 

Unsupervised 
Conv-AE + 

Seq2Seq LSTM 
Autoencoder 

IITH 79 20.50 
60 

 
- - 

DOTA 84.70 11.7 - - - 

A. R. 
Pathak et 

al. [18] 
Supervised 

YOLOv2 + 
Transfer Learning 

IITH - - 76 - - 

Thakare et 
al. [19] 

Semi-
Supervised 

Object Interaction 
+ Refinement + 

Heatmaps 

UCF Crime 69.70 - - - 0.8 

CADP 72.59 - - - 2.2 

Adewopo 
et al. [20] 

Supervised 
Lightweight I3D - 

ConvLSTM2D 
Custom 
Dataset 

- - 87 80% - 

Chauhan 
A et al. 

Unsupervised 
Proposed CVAE-

ADS 

IITH 90.61 18.2 - - - 

UCF-Crime 87.95 21.4 - - - 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1139
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 185-205                                        e-ISSN: 2656-8632 

 

Manuscript received 16 August 2025; Revised 10 November 2025; Accepted 20 December 2025; Available online 1 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1139 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 198               

minute abnormalities that may be difficult to detect using 
the manual.  
     The superior performance of the proposed CVAE-
ADS is largely attributed to its ability to learn a compact 
and structured representation of normal traffic patterns 
without relying on labeled accident data. Unlike 
conventional autoencoders or CNN-based classifiers, 
the variational formulation enforces regularization in 
the latent space, enabling clearer separation between 
normal and anomalous patterns. In addition, the 
convolutional layers preserve spatial characteristics 
such as vehicle structure and collision regions, which 
are often lost in fully connected or handcrafted feature-
based methods. This architectural combination of 
probabilistic modeling and spatial feature learning 
enhances class separability, resulting in higher AUC 
and lower EER on both the IITH and UCF-Crime 
datasets, making the proposed approach more robust 
and scalable for real-world traffic surveillance 
applications.  In terms of video summarization, our 
method extracts keyframes that cover not only scene 
variety but also critical accident moments. Compared 
to most of the prior works concentrating on random or 
uniform sampling, our approach can select frames not 
only as representatives of scene diversity but also 
enclosing critical accident moments. Here, we 
compared its performance using the key evaluation 
metrics with existing state-of-the-art summarization 

techniques, as shown in Table 7. Experiments 

demonstrate that the coverage and compression 
efficiency of CVAE-ADS outperform existing 
summarization methods. While methods like YOLO-
based summarization [23][24] achieve intermediate 
reduction rates, they do not present detailed metrics, 
e.g., diversity or coverage. On the other hand, CVAE-
ADS can achieve up to 85% reduction rates with 92.5% 

of coverage, and we obtain strong diversity scores as 
well that outperform previous works such as Thomas et 
al. [7] and Pramanik et al. [22] that do not provide 

comprehensive quantitative results. This demonstrates 
the proposed approach for how it effectively produces 
concise and informative summaries.  The effectiveness 
of the CVAE-ADS is also shown through the 
comparison with existing approaches since it delivers a 
good overall result in accident detection and video 
summarization. Our model improves reduction rates 
while demonstrating better coverage with diverse 
keyframe selection without the need for labelled data. 
The visualization of the clearly separate latent space 
demonstrates that the model represents meaningful 
scene dynamics successfully. Much existing research 

Table 7. Comparison of proposed CVAF-ADS With state-of-the-art video summarization approaches 

Author(s) Approach / Model Dataset(s) Used 
Reduction 
Rate (%) 

Diversity 
Rate 

Coverage 
(%) 

PSNR 
(dB) 

Thomas et 
al. [7] 

Perceptual Video 
Summarization 

YouTube-8M, 
Urban Tracker 

Used 
saliency 

× × × 

Kosambia 
et al. [21] 

Video Synopsis using 
ResNet 

IITH × × × × 

Pramanik et 
al. [22] 

Z-STRFG: Spatio-
temporal fuzzy 

approach 

YouTube8M, 
Anomaly20, Urban 

Tracker 
× × × × 

Mehwish 
Tahir et al. 

[23] 

YOLOv5 + Privacy-
preserved 

summarization 

Synthetic + Real-
time Data 

42.97% × × × 

Saxena et 
al. [24] 

YOLOv5 + Event-based 
summarization 

Synthetic + Real 
Traffic Videos 

20–50% × × × 

Proposed 
CVAE-ADS 
Approach 

Conv-VAE + Latent 
Space Clustering 

IITH, 70-85% 0.7249 92.5% 30.1 

UCF-Crime 70-80% 0.70 90.0% 28.8 

 

 
(a) 

 
(b) 

Fig. 8. Visual comparison between original and 
reconstructed frames generated by the proposed 
CVAE-ADS model. (a) Results on the IITH Dataset. 
(b) Results on the UCF-Crime Dataset. 
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relies on synthetic datasets or fails to evaluate crucial 
performance metrics. The proposed CVAE-ADS 
model, evaluated on real-world datasets, proves to be 
a scalable as well as practical solution for intelligent 
traffic surveillance systems. Despite CVAE-ADS being 
tested in an offline experimental environment, its 
compact convolutional architecture and frame-by-
frame analysis can be used in real-time in the 
conditions of real traffic surveillance. No complicated 
object tracking or external detectors are necessary with 
the model, reducing the computational overhead and 
allowing faster inference with conventional GPU-
enabled monitoring systems. This enables the accident 
occurrences to be identified in time, which is helpful for 
the production of quick alerts to the traffic control rooms 
and emergency response teams. Moreover, automatic 
summarization of keyframes reduces the workload of 
video inspectors, enabling authorities to assess the 
extent of an incident within seconds and the context of 
the situation to make decisions efficiently.  

The existing CVAE-ADS framework mainly works 
with single video frames, and it aims at learning spatial 
representations of normal traffic scenes to detect 
anomalies. Although this method is good at detecting 
visually sudden and structural anomalies, it does not 
directly model time-based dependence or dynamic 
motion patterns of successive frames, which can be 

informative in complex accident situations that have 
slow transitions or dynamic effects. To overcome this 
weakness, the proposed framework will be further 
expanded in the future with the inclusion of the 
temporal modeling mechanisms, including Long Short-
Term Memory (LSTM), Bidirectional Long Short-Term 
Memory (BiLSTM), or 3D convolutional networks to 
learn both spatial and temporal correlations in video 
sequences. Such temporal components are predicted 
to improve the detection of the subtle and time-varying 
anomalies as well as the increased robustness of the 
system in real-world traffic conditions. In addition, the 
experiments presented in this study are limited to the 
IITH and UCF-Crime datasets, which mainly consist of 
fixed-angle CCTV footage captured in urban and 
highway environments. These datasets do not fully 
represent all real-world conditions, such as rural roads, 
extreme weather, varying camera heights, wide-angle 
lenses, or dense heterogeneous traffic patterns. As a 
result, the model may encounter challenges when 
deployed in unseen environments with significant 
visual or contextual differences. Although the 
unsupervised design improves adaptability, further 
evaluation on more diverse and geographically 
distributed datasets is necessary to strengthen the 
model’s generalization capability. 

 

V. Discussion 
The experiments demonstrate that CVAE-ADS 
provides a competitive and robust solution for both 
accident detection and summarization in the context of 
traffic surveillance systems. The reconstruction-based 
anomaly scoring mechanism is able to recognize 
abnormal frames with high accuracy, while the latent 
space clustering approach retains the most informative 
segments for efficient summarization. The following 
discussion discusses how these findings relate to 
existing literature, pointing out similarities and 
contradictions, along with presenting current limitations 
of the proposed system. Compared with previous deep 
autoencoder-based anomaly detection frameworks 
such as those reported in [12], CVAE-ADS achieves a 
higher AUC, with an improvement of 13.6% on 
average. This is mainly due to its probabilistic latent 
modeling capability. Unlike stacked denoising 
autoencoders learning deterministic embeddings, our 
conditional latent space provides better separation 
between normal and accident events. Unlike 
approaches based on supervised learning or extensive 
labeled datasets, as in [14], CVAE-ADS does not need 
any manual annotations or pre-processing operations 
like Retinex enhancement. Hence, its scalability and 
applicability to realistic traffic surveillance 
environments significantly improve. Beyond [18], the 
proposed approach outperforms a temporal CNN-
based architecture, which easily results in overfitting 

 
(a) 

 
(b) 

Fig. 9. Latent Space Clustering via t-SNE for (a) 
IITH Dataset and (b) UCF-crime Dataset 
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when trained with limited accident datasets. Moreover, 
the reconstruction-driven anomaly metric of our 
framework generalizes better to unseen scenarios.  

Our results are consistent with findings in [22], 
which emphasized that the latent-space structure is 
critical for enhanced anomaly sensitivity in video 
surveillance applications. As in their studies, we found 
that latent-space clustering captures contextual 
representations relevant to summarizing critical 
frames. 

However, our results run counter to detection-only 
approaches using YOLO-based event localization 
networks as in [23] and [24]. These supervised 
detection systems tend to suffer from low-light 
conditions, partial occlusion, and motion blur, 
commonly occurring in traffic-camera videos. By 
contrast, CVAE-ADS shows consistent detection 
performance as the reconstruction error is inherently 
less sensitive to illumination variations and does not 
depend on explicit bounding-box predictions. Likewise, 

 
(a) 

 
(b) 

Fig. 10. Sample video summarization results generated by the proposed CVAE-ADS model.  (a) IITH 
accident dataset (b) UCF-Crime Dataset 
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handcrafted-feature-based or purely motion-heuristic-
based methods, as in [26], fail to generalize well to 
different accident types; our latent-space learning 
approach captures subtle deviations of spatial–
appearance cues much better. 

Despite its effectiveness, the CVAE-ADS 
framework has certain limitations. The current 
architecture, for starters, does not make use of explicit 
temporal modeling mechanisms such as LSTM 
networks, 3D CNNs, and transformer-based 
architectures. Due to this, the sequential motion 
dependencies between frames are not entirely 
captured, which may result in failing to detect accidents 
that evolve slowly or are subtle in nature. Moreover, the 
model is sensitive to challenging environmental 
conditions such as very low illumination, severe 
occlusions, and camera shake that badly affect the 
discriminative power of the reconstruction-based score 
for anomaly detection. Additionally, the experimental 
assessment is restricted to two benchmark datasets, 
namely the IITH and UCF-Crime datasets, which 
contain fixed-angle CCTV surveillance videos. As a 
result, the model has not undergone validation on a 
broad spectrum of scenarios, including drone-based 
surveillance and multi-camera systems or wide-area 
traffic monitoring environments. While the 
computational efficiency of CVAE-ADS is promising, 
we have yet to assess its real-time deployment on 
embedded edge devices, resource-constrained 
GPGPU platforms, or large-scale smart cities. In 
conclusion, the existing framework does not include 
mechanisms for dynamic adaptation to scenes and 
domain transfer, which may lead to limitations in its 
scalability and generalization when used in various 
geographic, camera and traffic settings. 

 
VI. Conclusion  
In this work, we present CVAE-ADS, a lightweight, 
unsupervised Conditional Variational Autoencoder–
based framework designed for effective accident 
detection and video summarization in traffic 
surveillance systems. The model consists of a two-
stage pipeline: i) reconstruction-based anomaly 
scoring for accurate accident detection, and ii) latent-
space clustering for generating compact and 
informative summaries that capture critical event 
information. Experimental results on both the IITH 
Accident Dataset and the Accident subset of UCF-
Crime demonstrate the superior performance of CVAE-
ADS against state-of-the-art methods. It achieved 
93.5% accuracy and 90.61% AUC on the IITH dataset 
and 87.95% AUC on the UCF-Crime dataset. 
Furthermore, for video summarization, CVAE-ADS was 
able to reduce the video length by 70–85% while 
maintaining 92.5% coverage of accident-related 
segments. 

      These results validate that CVAE-ADS can 
effectively detect anomalies and generate short 
summaries that greatly enhance the efficiency of post-
incident review, traffic monitoring, emergency 
response workflows, and legal verification processes. 
In future work, we would like to extend CVAE-ADS by 
introducing temporal modeling using 3D-CNNs, 
LSTMs, or transformer-based architectures to capture 
more complex motion patterns and contextual cues 
related to accidents. We also want to try GAN-
enhanced reconstruction, multi-camera fusion, and 
deployment in large-scale real-world scenarios across 
diverse and challenging traffic conditions to further 
validate its generalization capability. 
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