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Abstract This paper tackles the multi-depot heterogeneous-fleet vehicle-routing problem with time 

windows and simultaneous pickup and delivery (MDHF-VRPTW-SPD), a variant that mirrors he growing 

complexity of modern healthcare logistics. The primary purpose of this study is to model this complex 

routing problem as a mixed-integer linear program and to develop and validate a novel hybrid 

metaheuristic, B-ALNS, capable of delivering robust, high-quality solutions. The proposed B-ALNS 

combines a discrete Bat Algorithm with Adaptive Large Neighborhood Search, where the bat component 

supplies frequency-guided diversification, while ALNS adaptively selects destroy and repair operators and 

exploits elite memory for focused intensification. Extensive experiments were conducted on twenty new 

benchmark instances (ranging from 48 to 288 customers), derived from Cordeau’s data and enriched with 

pickups and a four-class fleet. Results show that B-ALNS attains a mean cost 1.15 % lower than a 

standalone discrete BA and 2.78 % lower than a simple LNS, achieving the best average cost on 17/20 

instances and the global best solution in 85% of test instances. Statistical tests further confirm the 

superiority of the hybrid B-ALNS, a Friedman test and Wilcoxon signed-rank comparisons give p-value of 

0.0013 versus BA and p-value of 0.0002 versus LNS, respectively. Although B-ALNS trades speed for quality 

(182.65 seconds average runtime versus 54.04 seconds for BA and 11.61 seconds for LNS), it produces 

markedly more robust solutions, with the lowest cost standard deviation and consistently balanced routes. 

These results demonstrate that the hybrid B-ALNS delivers statistically significant, high-quality solutions 

within tactical planning times, offering a practical decision-support tool for secure, cold-chain-compliant 

healthcare logistics.  

Keywords Pharmaceutical Distribution, Medical Logistics Networks, Vehicle Routing Problem, Hybrid 
Metaheuristic, Bat Algorithm, Adaptive Large Neighborhood Search. 

I. Introduction  

Efficient distribution products from depots to customers 
is a vital concern in modern logistics, impacting sectors 
such as pharmaceutical distribution, home healthcare, 
and other time-sensitive medical services. In these 
contexts, timely delivery of critical medications, 
optimized routing, and effective management of returns 
are crucial for reducing operational costs and improving 
service quality. This challenge is frequently modelled 

as the Vehicle Routing Problem (VRP), where a set of 
geographically dispersed customers must be served by 
a fleet of vehicles subject to numerous constraints. 
Since its inception by Dantzig and Ramser in 1959 [1], 
the VRP has evolved into numerous variants, such as 
the Capacitated VRP [2], VRP with Time Windows 
(VRPTW) [3], Heterogeneous Fleet VRP (HFVRP) [4], 
Pickup and Delivery VRP (PDVRP) [5], and Multi-Depot 
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VRP (MDVRP) [6], each designed to address specific 
practical considerations.    

This paper focuses on a specialized variant, the 
Multi-Depot Heterogeneous Fleet VRP with Time 
Windows and Simultaneous Pickup and Delivery 
(MDHF VRPTW SPD). This formulation closely aligns 
with pharmaceutical distribution requirements, where 
medications must be delivered to local pharmacies 
while concurrently collecting patient lab samples, 
expired drugs, or biohazardous waste, all under strict 
time windows (TW). The problem setup involves 
multiple depots, each housing different types of 
vehicles with distinct capacity and cost structures. The 
main objective is to minimize travel costs and reduce 
the number of vehicles used, while respecting vehicle 
capacity constraints, time windows, and depot-specific 
vehicle availability.  

To address the complexity nature of the MDHF-
VRPTW-SPD problem, we propose a novel hybrid 
approach (B-ALNS), that integrates the Bat Algorithm 
(BA) [7] with Adaptive Large Neighborhood Search 
(ALNS) [8]. The BA, inspired by the echolocation 
behavior of bats, effectively balances the search 
between exploring the entire solution space and 
exploiting local areas, which helps prevent early 
convergence to suboptimal solutions. In parallel, ALNS 
iteratively removes and reinserts parts of the solution 
to explore the search space thoroughly, a process that 
is especially effective for large-scale, real-world vehicle 
routing problems.  

This combined strategy ensures a balanced 
approach between global exploration and local 
refinement, leading to high-quality routing solutions 
while making efficient use of computational resources 
within the MDHF-VRPTW-SPD context. By applying 
the proposed hybrid B-ALNS method to 20 test 
instances, we observed that it consistently delivers 
high-quality routing solutions. The method not only 
minimizes travel costs and reduces the number of 
vehicles required but also efficiently manages 
computational resources, even as problem complexity 
increases. These promising results highlight the 
robustness and practical applicability of our approach 
for addressing the challenging MDHF-VRPTW-SPD in 
real-world pharmaceutical distribution scenarios.  

The remainder of this paper is structured as follows. 
Section IIpresents a comprehensive review of the 
existing literature, emphasizing recent developments 
and identifying gaps in the research on complex vehicle 
routing problems. Section III provides a formal 
description of MDHF-VRPTW-SPD, presenting its 
mathematical formulation along with the key 
constraints involved. Section IVintroduces the 
proposed hybrid B-ALNS approach, detailing its 
algorithmic framework and operational mechanics. 

Section V reports the experimental results gathered 
from 20 benchmark instances, showcasing the 
effectiveness and efficiency of the methodology. 
Finally, section VI wraps up the paper with concluding 
remarks and suggests potential directions for future 
research. 

II. Literature survey 

The MDHF-VRPTW-SPD problem considered in this 
study shares characteristics with several well-known 
VRP variants, especially the pickup and delivery VRP 
with time windows (PD-VRPTW) [9] and the multi-depot 
VRP with time windows (MD-VRPTW)  [6] [45]. In 
recent years, these variants have attracted significant 
research interest, leading to the development of 
various extensions. These include optimizing 
Simultaneous pickup and delivery VRP for personnel 
transportation in COVID-19 [10] and formulating multi-
depot VRPs with simultaneous pickup and delivery 
within the context of the physical internet [11], all 
aiming to better reflect the complexities of real-world 
distribution scenarios. Applications of these rich VRP 
variants are found in diverse industries, ranging from 
last-mile e-commerce logistics [12], milk collection in 
dairy supply chains [13], and Vehicle routing problem 
in cold-Chain logistics [14]. number of vehicles used, 
while respecting vehicle capacity constraints, time 
windows, and depot-specific vehicle availability.  

Recent advancements in vehicle routing have 
refined both modeling and solution strategies to 
address the complex challenges of modern healthcare 
logistics. For instance, [15] optimizes medical-waste 
collection by combining time-window limits with 
stochastic travel-time reliability considerations in 
public-health operations. Similarly, [16] extends the 
classical VRP to a multi-depot, multimodal home-
health-care setting, where routing and scheduling 
decisions must respect both vehicle–mode 
compatibility and depot assignment. Addressing direct 
patient service, [17] formulates a VRP with 
simultaneous delivery and pickup, time windows, and 
vehicle-capacity limits to ensure that drug deliveries 
and bio-sample returns are coordinated within clinically 
acceptable windows references. To guarantee safe 
disposal pathways, [18] introduces multi-compartment 
vehicles, enforcing the segregation of hazardous 
versus non-hazardous waste throughout the route 
references. Finally, [19] tackles emergency medical 
logistics with a heterogeneous fleet, coupling pickup-
and-delivery tasks and strict time windows. 

To tackle the complexity of problems such as the 
MDHF-VRPTW-SPD, researchers have developed 
various methods, including exact algorithms, 
heuristics, and metaheuristics. Exact algorithms, such 
as Branch-and-Bound [20], Branch-and-Price [21], and 
dynamic programming [22], can find optimal solutions 
but are often impractical for large-scale instances due 
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to the NP-hard nature of these problems. As problem 
size increases, computation time grows exponentially, 
limiting the applicability of exact methods to smaller 
problems. Laporte [23] reviews several exact 
algorithms and classical heuristics developed to solve 
the VRP. Among these heuristics, the Clarke-Wright 
Savings Algorithm [24] and the sweep algorithm [25] 
are widely studied, though often tailored to particular 
problem scenarios, which may limit their broader 
applicability. 

Considering these limitations, metaheuristics 
provide effective solutions for addressing complex VRP 
variants. Population-based methods, including genetic 
algorithm [26] and differential evolution [27], as well as 
swarm intelligence techniques such as ant colony 
optimization [28], particle swarm optimization [29], 
firefly algorithm [30], and bat algorithm, effectively 
navigate extensive solution spaces. Local search 
techniques, including simulated annealing [31] and 
tabu search [32], improve solutions by escaping local 
optima. Large neighborhood search (LNS) [33] 
enhances the solution quality through an iterative 
process of destruction and repair operations. Hybrid 
metaheuristics [34] integrate global and local search 
strategies, resulting in enhanced performance. 

ALNS has demonstrated considerable efficacy 
across many VRP types. Ropke and Pisinger [8] initially 
demonstrated its efficacy on the PDPTW by adaptively 
selecting destroy and repair operators, resulting 
performance enhancements across more than half of 
the benchmarks. Naccache et al. [35] improved ALNS 
for the multi-pickup and delivery problem with time 
windows by incorporating specialized operators to 
address precedence constraints. Sacramento et al. [36] 
employed ALNS for truck-drone routing, effectively 
exploring the solution space. While Mofid-Nakhaee and 
Barzinpour [37] hybridized ALNS with a whale 
optimization algorithm to address a multi-compartment 
waste collecting issue, showcasing effective 
hybridization. Chen et al. [38] expanded ALNS to 
synchronize vans and delivery robots in VRPTW, 
emphasizing its flexibility in supporting emerging 
logistics technologies.  

Bat-inspired metaheuristics have progressively 
evolved to address diverse VRP challenges. Yang [7] 
first introduced the Bat Algorithm (BA), outperforming 
classical methods on continuous benchmarks. Taha et 
al. [2] later adapted BA for the Capacitated VRP (ABA), 
achieving high precision on standard CVRP instances. 
Osaba et al. [39] developed a discrete, hamming 
distance–based BA for medical goods distribution with 
waste collection, validated via rigorous statistical tests. 
To handle time-window constraints, Osaba et al. [40] 
proposed an evolutionary discrete BA with random 
reinsertion, unifying route minimization and 
diversification. Finally, Taha et al. [41] hybridized BA 

with Large Neighborhood Search to solve the VRPTW, 
demonstrating competitive convergence on Solomon’s 
benchmarks.  

Despite considerable advances, most VRP models 
still address only isolated features, time windows, 
heterogeneous fleets, or pickup and delivery, rather 
than their combination. The MDHF VRPTW SPD 
variant bridges this gap by unifying multiple depots, 
diverse vehicle types, strict time windows, and 
simultaneous pickup and delivery into a single 
framework. This holistic approach mirrors real-world 
pharmaceutical distribution, where logisticians must 
coordinate varied fleets across several depots to 
manage both deliveries and returns within tight 
schedules. On the other hand, to address the proposed 
problem, we have developed a hybridization of a 
discrete version of the BA and the ALNS. To the best 
of our knowledge, no prior work has fully applied the 
hybrid B-ALNS to such a complex VRP, underscoring 
the novel contribution of our study. 

III. Problem formulation 

The application of the MDHF-VRP-TWSPD is 
commonly observed in the pharmaceutical and 
healthcare logistics, where last‑mile parcel services 

deliver customers’ orders and, during the same 
scheduled time window, simultaneously collect return 
packages. Our objective is to minimize the total 
transport cost, defined as the sum of fixed dispatch 
charges for each vehicle used and variable expenses 
proportionate to the distance traveled along the routes. 
A feasible solution to the MDHF-VRPTW-SPD must 
satisfy a strict set of operational constraints. 

Fundamentally, each customer must be visited 
exactly once by a single vehicle, ensuring that neither 
delivery nor pickup tasks are split across multiple visits 
or vehicles. Each vehicle must depart from and return 
to its originating depot. Throughout its tour, a vehicle's 
onboard load must remain within its designated 
capacity, accounting for the decrease in load after 
deliveries and the increase after pickups. The 
simultaneous nature of the problem dictates that both 
delivery and pickup operations at a customer location 
occur during the same stop. Critically, all services must 
comply with customer time windows; vehicles may wait 
if they arrive early, but service must be completed 
before the customer’s closing time. Operationally, the 
number of vehicles of each type dispatched from a 
depot cannot exceed its available fleet inventory. 
Finally, to ensure driver and vehicle compliance, the 
total duration of any route, including all driving, waiting, 
and service times, must not exceed the maximum duty 
time allowed for that vehicle type, and all vehicle types 
are treated as heterogeneous with distinct capacity and 
cost attributes.  
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Fig.1 represents a problem instance with 8 
customers (e.g. local pharmacies). Each customer 
requires a medical delivery (green arrows) and has a 
simultaneous collection task for waste or expired 
medicine (red arrows). A heterogeneous fleet of three 
specialized vehicle types, dispatched from two different 
depots, serves these customers. Finally, the clocks 
refer to the time window that vehicles must respect 
when performing service.  

To formulate the MDHF-VRP-TWSPD as a mixed-
integer linear program, we first define its core 
components. The problem is defined on a directed 
graph consisting of a set of customers 𝐶 indexed by 𝑖 
(or 𝑗 when used as a destination index) and a set of 

depots 𝐷, indexed by 𝑑. The complete node set is 

therefore 𝑉 = 𝐷 ∪ 𝐶, while contains 𝐴 ⊆ 𝑉 × 𝑉 all 
directed arcs (𝑖, 𝑗) with 𝑖 ≠ 𝑗. A heterogeneous fleet is 

represented by the set of vehicle types 𝐾, indexed by 

𝑘; each depot 𝑑 ∈ 𝐷 disposes of 𝐹𝑑𝑘  vehicles of type 𝑘. 

We write 𝑁 = |𝐶| for the number of customers. 

Each vehicle type 𝑘 offers a capacity 𝑄𝑘 and incurs 
a fixed dispatch cost 𝑓𝑘 together with a distance-

proportional cost 𝑐𝑘. Every customer 𝑖 requests a 

delivery quantity 𝑎𝑖 and a pick-up quantity 𝑏𝑖, service at 

that location can begin no earlier than 𝑒𝑖 and must finish 

by 𝑙𝑖, occupying 𝑠𝑖 service time units. Travelling along 

arc (𝑖, 𝑗) consumes 𝜏𝑖𝑗 units of time and covers a 

distance 𝑑𝑖𝑗. Each vehicle type is further subject to a 

maximum route duration 𝑇𝑘
𝑚𝑎𝑥 . To linearize load, time-

propagation and return-duration constraints we define 
three Big-M constants: 𝑀𝑘

𝑤 = 𝑄𝑘 for load conservation, 
𝑀𝑖𝑗,𝑘

𝑡 = 𝑙𝑗 − 𝑒𝑖 − 𝑠𝑖 − 𝜏𝑖𝑗   for time propagation on every 

arc (𝑖, 𝑗) ∈ 𝐴, and 𝑀𝑖𝑑,𝑘
𝑟 = 𝑇𝑘

𝑚𝑎𝑥 − 𝑠𝑖 − 𝜏𝑖𝑑 for enforcing 

the route-duration limit on return arcs (𝑖, 𝑑). 

Binary decision variables 𝑥𝑖𝑗
𝑘𝑑 ∈ {0,1} equal 1 when 

a type-k vehicle is based at the depot 𝑑 traverses arc 

(𝑖, 𝑗). Two continuous auxiliary variables track route 

state: 𝑤𝑖
𝑑𝑘 ≥ 0 records the vehicle load immediately 

after servicing node 𝑖, while 𝑡𝑖
𝑑𝑘 ≥ 0 stores the service-

completion time at that node. Finally, classical Miller–
Tucker–Zemlin (MTZ) indices 𝑢𝑖 ∈ {1, … , 𝑁} eliminate 

sub-tours by imposing an ordering on the customer set. 

The objective function Eq. (1) optimizes transport 
cost by summing the fixed dispatch cost for each 
vehicle and the distance-proportional cost on each 
traveled arc. Constraint Eq. (2) [1] ensures single 
service by forcing each vehicle to visit each client 
exactly once, whereas Eq. (3) [1] conserves flow by 
requiring vehicles to enter and leave customers. 
Constraint Eq. (4) [1] limits the number of vehicles of 
each type that can depart from (and return to) a depot 
to its available inventory, combining fleet availability 
and depot consistency. Constraints Eq. (5) and Eq. (6) 
[9] subtract deliveries and add pickups to distribute 
vehicle loads over the network while ensuring vehicle 
capacity limits are respected.    

𝑀𝑖𝑛 ∑ ∑ [𝑓𝑘 ∑ 𝑥𝑑𝑗
𝑑𝑘

𝑗:(𝑑,𝑗)∈𝐴

+ ∑ 𝑐𝑘𝑑𝑖𝑗𝑥𝑖𝑗
𝑑𝑘

(𝑖,𝑗)∈𝐴

]
𝑘∈𝐾𝑑∈𝐷

 (1) 

The problem is subject to the following constraints: 

∑ ∑ ∑ 𝑥𝑖𝑗
𝑑𝑘

𝑖:(𝑖,𝑗)∈𝐴𝑘∈𝐾𝑑∈𝐷

= 1,   ∀𝑗 ∈ 𝐶 (2) 

∑ 𝑥𝑖𝑗
𝑑𝑘

𝑗:(𝑖,𝑗)∈𝐴

= ∑ 𝑥ℎ𝑖
𝑑𝑘

ℎ:(ℎ,𝑖)∈𝐴

,   ∀𝑖 ∈ 𝐶, 𝑑, 𝑘 (3) 

∑ 𝑥𝑑𝑗
𝑑𝑘

𝑗∈𝐶

= ∑ 𝑥𝑖𝑑
𝑑𝑘

𝑖∈𝐶

≤ 𝐹𝑑𝑘 ,   ∀𝑑, 𝑘 (4) 

𝑤𝑗
𝑑𝑘 ≥ 𝑤𝑖

𝑑𝑘 − 𝑎𝑗 + 𝑏𝑗 − 𝑀𝑘
𝑤(1 − 𝑥𝑖𝑗

𝑑𝑘),   ∀(𝑖, 𝑗)

∈ 𝐴, 𝑑, 𝑘 
(5) 

0 ≤ 𝑤𝑖
𝑑𝑘 ≤ 𝑄𝑘 , ∀𝑖 ∈ 𝑉, 𝑑, 𝑘 (6) 

𝑡𝑗
𝑑𝑘 ≥ 𝑡𝑖

𝑑𝑘 + 𝑠𝑖 + 𝜏𝑖𝑗 − 𝑀𝑖𝑗,𝑘
𝑡 (1 − 𝑥𝑖𝑗

𝑑𝑘),   ∀(𝑖, 𝑗)

∈ 𝐴, 𝑑, 𝑘 
(7) 

𝑒𝑖 ≤ 𝑡𝑖
𝑑𝑘 ≤ 𝑙𝑖 ,   ∀𝑖 ∈ 𝐶, 𝑑, 𝑘 (8) 

𝑡𝑖
𝑑𝑘 + 𝑠𝑖 + 𝜏𝑖𝑑 ≤ 𝑇𝑘

𝑚𝑎𝑥 + 𝑀𝑖𝑑,𝑘
𝑟 (1 − 𝑥𝑖𝑑

𝑑𝑘),   ∀𝑖

∈ 𝐶, 𝑑, 𝑘 
(9) 

𝑢𝑖 − 𝑢𝑗 + 𝑁 ∑ ∑ 𝑥𝑖𝑗
𝑑𝑘

𝑘∈𝐾𝑑∈𝐷

≤ 𝑁 − 1,   ∀𝑖 ≠ 𝑗 ∈ 𝐶 (10) 

1 ≤ 𝑢𝑖 ≤ 𝑁,   ∀𝑖 ∈ 𝐶 (11) 

𝑤𝑑
𝑑𝑘 = 0,   𝑡𝑑

𝑑𝑘 = 0,   ∀𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾 (12) 

𝑥𝑖𝑗
𝑘𝑑 ∈ {0,1},  

𝑤𝑖
𝑑𝑘 ≥ 0, 

𝑡𝑖
𝑑𝑘 ≥ 0, 

𝑢𝑖 ∈ ℤ ∩ [1, 𝑁] 

∀𝑖, 𝑗 ∈ 𝐶, 𝑑, 𝑘 (13) 

 

Fig. 1. The Visual representation of the MDHF-
VRP-TWSPD in the pharmaceutical distribution. 
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Service completion, travel, and waiting durations 
are carried forward by constraints Eq. (7) and Eq. (8) 
[3], ensuring each service occurs within its prescribed 
time window.  Constraint Eq. (9) [3] limits route 
duration, so no vehicle exceeds its duty time. Finally, 
the MTZ subtour-elimination constraints Eq. (10) and 
Eq. (11) [46] organize customers' visits, preventing 
customer-only loops and ensuring that all routes are 
connected to a depot. Constraint Eq. (12) [6] fixes each 
route to its origin by setting the load and time at every 
depot to zero, providing a valid starting point for 
subsequent propagation. The variable domains Eq. 

(13) are as follows: each routing decision 𝑥𝑖𝑗
𝑘𝑑 is binary; 

the load 𝑤𝑖
𝑑𝑘 and time 𝑡𝑖

𝑑𝑘 variables are continuous and 

nonnegative; and each ordering index 𝑢𝑖 is an integer 

between 1 and 𝑁. 

IV. Hybrid B-ALNS 

A. Original Bat Algorithm 

The original Bat Algorithm (BA), introduced by Yang in 
2010 [7], simulates the echolocation behavior of 
microbats for global optimization. It integrates three key 
mechanisms, frequency tuning, loudness control, and 
pulse‑emission adaptation,  while employing simple yet 

effective update rules for pulse frequency, velocity, and 
position, complemented by a local random walk for 
intensified search. The BA operates under three 
idealized rules:  

1. Each bat uses echolocation, emitting acoustic 
pulses and listening for echoes, to explore the 
search space and avoid obstacles. 

2. Each bat 𝒊 flies randomly with velocity 𝒗𝒊 at position 

𝒙𝒊, emitting pulses at frequency 𝒇𝒊 ∈ [𝒇𝒎𝒊𝒏, 𝒇𝒎𝒂𝒙], 
wavelength 𝝀, and loudness 𝑨𝒊. Bats adjust the 

frequency 𝒇𝒊 and their pulse‑emission rate 𝒓𝒊 ∈
[𝟎, 𝟏] adaptively based on how close they are to 

promising solutions. 
3. The loudness 𝑨𝒊 decays from an initial value 𝑨𝟎 

toward a minimum 𝑨𝒎𝒊𝒏  as bats converge on prey 

(i.e., optimal solutions). 

At each iteration 𝑡, the pulse frequency of the bat 𝑖 is 

updated via Eq. (14) [7]: 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 (14) 

where 𝑓𝑖 is the frequency of the bat 𝑖, 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥  are 
the minimum and maximum frequencies, 
respectively, and 𝛽 is a random vector drawn from a 

uniform distribution 𝑈(0,1). Each bat in the population 

moves through the search space by updating its 
velocity 𝑣𝑖 and position 𝑥𝑖 using the Eq(15) and Eq. (16) 

[7]: 

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥∗)𝑓𝑖  (15) 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡   (16) 

with 𝑥∗ denoting the global best solution found so far. 

To enhance local search, a random walk around the 
current best is performed using Eq. (17) [7]: 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀𝐴𝑡  (17) 

where 𝑥𝑛𝑒𝑤 and 𝑥𝑜𝑙𝑑  are the new and old generated 

solutions respectively, 𝜀 is a random number 
in [−1, 1] and 𝐴𝑡  is the average loudness of the swarm 

at time step 𝑡.  

𝐴𝑖
𝑡+1  = 𝛼𝐴𝑖

𝑡  (18) 

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − exp (−γt)]  (19) 

where 𝛼 ∈ (0,1) is a constant that controls loudness 

decay and 𝛾 > 0 is a constant that governs the increase 

of 𝑟𝑖. Upon locating better solutions, bats decrease their 

loudness and increase pulse emission rates using Eq. 

(18) and  Eq. (19) [7]. As 𝑡 → ∞, 𝐴𝑖
𝑡 → 0 and 𝑟𝑖

𝑡 → 𝑟𝑖
0, 

ensuring convergence. As Yang indicates in his paper 
[7], the parameters 𝛾 and 𝛼 are typically set to values 

close to 1 for simplicity, for example, many studies in 
the literature choose 𝛾 =  𝛼 =  0.98. 

Algorithm 1: Original Bat Algorithm 

Input: objective function 𝑓(𝑥), population size 𝑛, 

termination criterion 
Output: best solution 𝑥∗ 

 1. Initialize the bat population 𝑥𝑖, (𝑖 =  1, . . . , 𝑛) 

 2. for each bat 𝑥𝑖 in the population do 

 3.    Initialize the velocity 𝑣𝑖, the pulse rate 𝑟𝑖 and the 

loudness 𝐴𝑖 

 4.    Define the frequency 𝑓𝑖 at position 𝑥𝑖 

 5. end for 
 6. Evaluate 𝑓(𝑥𝑖) for all bats and set 𝑥∗  ←  𝑏𝑒𝑠𝑡 𝑥𝑖 

 7. while termination criterion not reached do 
 8.     for each bat 𝑥𝑖 in the population do  

 9.      Generate new solutions by adjusting 
frequency, and updating velocity and 
position [Eq. (14) to Eq. (16) [7]] 

10.        if 𝑟𝑎𝑛𝑑()  >  𝑟𝑖 then 

11.             Select one solution among the current 
best solutions 
12.          Generate a local solution around the 
selected solution [Eq. (17) [7]] 
13.        end if  
14.        Generate a new solution by flying randomly 
15.        if 𝑟𝑎𝑛𝑑()  <  𝐴𝑖 and 𝑓(𝑥𝑖)  <  𝑓(𝑥∗) then 

16.            accept the new solutions;  
17.            increase 𝑟𝑖 and reduce 𝐴𝑖 [Eq. (18) and 

Eq. (19) [7]] 
18.        End if 
19.    end for 
20.    rank the bats and find the current best solution 
𝑥∗ 

21. end while 
22. Return 𝑥∗ 
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This combination of global moves guided by 
echolocation and local random walks endows the BA 
with both exploration and exploitation capabilities, 
making it a robust choice for continuous optimization 
tasks. The overall procedure is summarized in 
Algorithm 1, which describes the pseudocode of the 

original BA. 

B. Adaptive Large Neighborhood Search 

The ALNS heuristic, first proposed by Ropke and 
Pisinger [8], explores vast solution spaces by 
iteratively “destroying” and “repairing” candidate 
solutions. In each iteration, a removal operator (RO) 
selectively removes a subset of elements from the 
current solution, creating a partial solution. An insertion 
operator (IO) then rebuilds it by reinserting the 
removed elements in the best possible positions. By 
dynamically selecting among multiple ROs and IOs 
based on their past performance, ALNS balances 
diversification and intensification to identify high-
quality solutions efficiently.  

The pseudocode presented in Algorithm 2 begins 
by setting the best solution 𝑠𝑏𝑒𝑠𝑡 to the initial solution 𝑆 

(line 1). The main loop (lines 2-15) repeats until the 
termination criterion is reached. In each iteration, a 
temporary copy 𝑆′ of the current solution 𝑆 is made 

(line 3). The algorithm then determines the number 𝑚 

of customers to remove by drawing uniformly between 
min{0.1𝑁, 30} and 𝑚𝑖𝑛{0.4𝑁, 60}, where 𝑁 is the total 

customer count (line 4). Next, one removal operator 
𝑟𝑒𝑚 and one insertion operator 𝑖𝑛𝑠 are chosen from 

their respective sets of removal and insertion operators  
(RO and IO) via a roulette-wheel selection that favors 
higher-scoring operators, where scores increase every 
time an operator improves a solution (lines 5-6). 
Applying 𝑟𝑒𝑚 to 𝑆′ removes 𝑚 customers from 𝑆′, and 

𝑖𝑛𝑠 then reinserts them in feasible positions (lines 7-8). 

If the repaired solution 𝑆′ outperforms the global best 

solution 𝑆𝑏𝑒𝑠𝑡, it updates it (lines 9–11). To avoid 

getting trapped in local optima, the acceptance of a 
new solution is governed by a Simulated Annealing 
(SA) criterion. An improved solution 𝑆’ is always 

accepted, while a worse solution may be accepted with 

a probability 𝑒
−(𝑓(𝑆′)−𝑓(𝑆))

𝑇   (line 12) [8]. Here, the 

temperature 𝑇 >  0  decays exponentially at each step 

and 𝑓(𝑆) represent the cost of a solution 𝑆 (lines 13-

14). 

In our work, we employ four distinct removal 
(destroy) operators and a single insertion (repair) 
operator, whose choice is controlled by adaptive 
weights. The first operator, Random Removal, selects 
a subset of customers uniformly at random and 
removes them from the current solution. This operator 
promotes broad exploration by disrupting diverse parts 
of the route. 

A more structured approach is Cluster-Based 
Removal, which partitions the customer set into 
spatially or structurally coherent groups, using k-means 
clustering or minimum spanning trees, to form clusters 
𝐶1, … , 𝐶𝐾. At each iteration, one or more of these 

clusters is selected randomly, and all customers within 
the chosen cluster are removed from the solution. 

The third operator, Shaw Removal, which was 
proposed by Shaw in 1997 [42], employs a relatedness 
measure described by Eq.(20) [42]: 

𝑟𝑒𝑙𝑠ℎ(𝑖, 𝑗) = 𝜆𝑑𝑖𝑗 + 𝜇|𝑇𝑖 − 𝑇𝑗| + 𝜈|𝑞𝑖 − 𝑞𝑗| 

+𝜉(1 − ||𝐾𝑖| − |𝐾𝑗||)     (20) 

Where 𝑑𝑖𝑗 is the distance between customers 𝑖 and 𝑗, 

𝑇𝑖 their service start times, 𝑞𝑖 their demands, and |𝐾𝑖| 
the number of feasible vehicles, with weights 𝜆, 𝜇, 𝜈, 𝜉 >
0. Starting from a random seed customer, the operator 

iteratively removes its 𝑛 − 1 most related neighbors, 

refining routes by reassembling closely connected 
customers. 

Finally, Worst Removal focuses the search on 
poorly placed customers by targeting those whose 
removal yields te most significant immediate cost 
benefit. For each customer 𝑖 in the current solution 𝑆, 

we calculate 𝛥𝑖 = 𝑓(𝑆) − 𝑓(𝑆 ∖ {𝑖}) [8], where 𝛥𝑖 

represent the cost benefit of removing customer 𝑖, 
𝑓(𝑆) denotes the objective function value of the 

current solution 𝑆 and 𝑓(𝑆 ∖ {𝑖})is the objective 

function value of the solution without customer 𝑖. Then, 

customers are ranked by descending cap delta sub i.  
and probabilistically remove  those that most degrade 
solution quality, thus focusing repair on the routes 
needing greatest improvement. 

Algorithm 2: Adaptive Large Neighborhood Search 

  Input: termination criterion, Initial solution 𝑆  

  Input: Set of destroy operators 𝑅𝑂 and repair 

operators 𝐼𝑂 

  1. 𝑆𝑏𝑒𝑠𝑡  ←  𝑆 

  2. while termination criterion not reached do 
  3.      𝑆’ ←  𝑆 

  4.      𝑚 ← random number of customers to remove 

  5.      𝑟𝑒𝑚 ← select a random operator from 𝑅𝑂 

  6.      𝑖𝑛𝑠 ← select a random operator from 𝐼𝑂 

  7.      remove 𝑚 customer from 𝑆’ using 𝑟𝑒𝑚  

  8.      insert removed customers into 𝑆’ using 𝑖𝑛𝑠 
  9.      if 𝑓(𝑆’)  >  𝑓(𝑆𝑏𝑒𝑠𝑡) then 

10.            𝑆𝑏𝑒𝑠𝑡  ←  𝑆’ 
11.      end if 
12.      if 𝑎𝑐𝑐𝑒𝑝𝑡(𝑆’, 𝑆) then 

13.             𝑆 ←  𝑆’ 
14.      end if 
15. end while 
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For the repair phase, we use a single, powerful 
insertion operator: the k-regret insertion heuristic [8]. 
For each removed customer 𝑖, it calculates the cost 

difference between inserting it in its best possible 
position 𝑐𝑖1 versus its k-th best position 𝑐𝑖𝑘. The regret 

value is calculated as 𝛥𝑓𝑖  =  ∑ 𝑐𝑖𝑘 − 𝑐𝑖1
𝐾
𝑘=2  [8]. At each 

step, the customer with the highest regret value is 
inserted into its best position, balancing immediate cost 
reduction with future insertion difficulty. In our 
implementation, 𝐾 is set to a value between 2 and 5, 

depending on the number of un-routed customers.. 

The choice of removal operator is governed by a 
roulette-wheel mechanism [8], where each operator 𝑖 
has a weight 𝑤𝑖 reflecting its past performance. At each 

iteration, any operator that yields an improved solution 
is rewarded by increasing its weight by 𝜎, thereby 

boosting its future selection probability. The selection 
probability is recalculated as 𝑝𝑖 = 𝑤𝑖/ ∑ 𝑤𝑗

𝑚
𝑗=1 , where m 

is the total number of removal operators. This 
reinforcement mechanism ensures that more effective 
operators are chosen more frequently, dynamically 
steering the search toward the most promising 
destroy–repair strategies. 

C. The proposed Hybrid B-ALNS 

In this section, we present the hybrid Bat-Adaptive 
Large Neighborhood Search (B-ALNS) developed 
explicitly for the MDHF-VRPTW-SPD. The integration 
of BA and ALNS follows a master-slave architecture 
where the Bat Algorithm acts as a high-level controller, 
guiding the overall search strategy. At the same time, 
the Adaptive Large Neighborhood Search functions as 
a powerful engine for generating new candidate 
solutions through targeted destroy-and-repair 
operations. This synergistic relationship allows the 
hybrid B-ALNS to balance global exploration with local 
intensification. 

Because the original Bat Algorithm was designed for 
continuous optimization, we adapted it to handle the 
combinatorial nature of the MDHF-VRPTW-SPD. In 
this approach, each bat corresponds to a feasible 
routing solution, and bats iteratively move toward the 
best-known solution to minimize the total routing cost. 
We retain the fundamental BA parameters (pulse rate 
𝑟𝑖, loudness 𝐴𝑖, frequency 𝑓𝑖, and velocity 𝑣𝑖), with 

adapted interpretations suitable for discrete problems. 
The pulse rate and loudness maintain their original 
roles: as bats approach optimal solutions, their 
loudness decreases while their pulse emission rates 
increase. To reflect this behavior, the pulse rate update 
remains unchanged Eq. (19) [7], while we defined the 
loudness to follow an exponential cooling schedule 
expressed as Eq. (21) [2]: 

𝐴𝑖
𝑡+1 = 𝐴𝑖

0 [exp (−𝑙𝑜𝑔2)
𝑡

𝛼𝑡𝑚𝑎𝑥

]  (21) 

Where 𝛼 is the loudness decay factor, a constant 
typically set to a value close to 1, 𝐴𝑖

0 is the initial 

loudness, 𝑡 is the current iteration and 𝑡𝑚𝑎𝑥  is the 

maximum allowed iterations. 

Additionally, each bat selects a discrete frequency 
𝑓𝑖 uniformly within a range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] ⊆ {1, … , 𝑛}, 
where 𝑛 is the number of customers. The frequency 𝑓𝑖 

determines the portion of the solution that will be 
destroyed by a removal operator, in order to be 
repaired later by an insertion operator: a higher value 
corresponds to larger perturbations (moving toward 
distant solutions), while lower frequencies facilitate 
local improvements through minor adjustments. This 
discrete frequency adaptation allows our hybrid B-
ALNS to effectively balance broad exploration with 
local refinement in solving the MDHF-VRPTW-SPD. 

Finally, we adapted the definition of the bat velocity 
𝑣𝑖 to suit the discrete nature of the problem. In the 

original BA, velocity depends on the distance between 
the current position of the bat 𝑖 at iteration 𝑡 − 1 and the 

best-known position of the swarm. Since solutions to 
the MDHF-VRPTW-SPD are represented as 
sequences of routes, we measure this distance using 
the edge-difference distance, which counts the number 
of arcs (connections between customers or depots) 
differ between two solutions. 

Thus, we redefine the velocity 𝑣𝑖
𝑡 of bat 𝑖 at iteration 

𝑡 as a random number drawn uniformly from the interval 

between 2 and the calculated edge-difference 
distance, as shown in Eq. (22) [2]: 

𝑣𝑖
𝑡 = 𝑅𝑎𝑛𝑑(2, 𝐸𝑑𝑔𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑥𝑖

𝑡−1, 𝑥∗)) (22) 

This formulation ensures the bats’ movements 
correspond meaningfully to their closeness to the best 
solution. 

In the original Bat Algorithm, bats update their 
positions using continuous Eq. (16) [7], which cannot 
be directly applied to the combinatorial structure of the 
MDHF-VRPTW-SPD. Therefore, in our hybrid B-ALNS, 
bat movement is simulated using the remove-and-
insert (R&I) paradigm from Large Neighborhood 
Search, formulated as in Eq. (23): 

𝑥𝑖
𝑡 = 𝑅&𝐼(𝑥𝑖

𝑡−1, 𝑣𝑖
𝑡 , 𝑓𝑖) (23) 

Specifically, each bat applies the R&I operators 

iteratively 𝑣𝑖
𝑡 times, each time removing 𝑓𝑖 customers 

using one of the four previously described removal 
operators and then reinserting them through the k-
regret heuristic. After evaluating these candidate 
solutions, the bat selects the best-performing solution 
as its new position. This evolutionary approach 
effectively replaces the directional movements of bats 
through the search space.   

In our proposed Hybrid B-ALNS, all operational 
constraints defined in the mathematical model are 
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treated as hard constraints that cannot be violated. This 
is enforced directly within the solution generation 
process rather than through penalty terms in the 
objective function. Specifically, the destroy and repair 
operators, particularly the k-regret insertion heuristic, 
are designed to be feasibility-preserving. During the 
repair phase, a customer can only be inserted into a 
route if the move does not violate any constraints, 
including vehicle capacity, customer time windows, and 
maximum route duration. Any potential move that 
would result in an infeasible solution is immediately 
discarded from consideration.  

The detailed workflow of the Hybrid B-ALNS is 
outlined in Algorithm 3. The process begins by seeding 
a population of 𝑛 feasible solutions using the 𝑘-regret 

insertion heuristic, where 𝑘 = 2 (line 1). Each bat’s 

fitness, parameters, and memory are initialized (lines 2 

to  6), and the global solution 𝑥∗ is initialized to the best-

performing solution among the initial population (line 

7). The main iterative loop (line 8) then proceeds as 

follows for each bat 𝑖 : First, the BA component acts as 

a high-level controller by adjusting its frequency 𝑓𝑖 

using Eq. (14) (line 10) and then calculates a velocity 
𝑣𝑖 using Eq. (22) (line 11) to determine the search 

intensity.  

This control is then passed to the ALNS engine for 
the diversification step (lines 12 to  19), where it 
executes a loop 𝑣𝑖 times to generate a new candidate 

solution using Eq. (23) each iteration (line 14). The 
specific destroy-and-repair operators for each move 
are selected via the adaptive roulette-wheel 
mechanism, which favors operators that have recently 
produced high-quality solutions and rewards any 
operator that yields an improved solution (lines 17 to  
19). The best-found candidate from this phase, 𝑥𝑑𝑖𝑣, is 

added to the bat's elite memory list (line 20), pruning 
the worst if it exceeds the size of 𝑀. This memory 

serves two purposes: it preserves high-quality solutions 
from being lost and it provides a pool of elite candidates 
for the intensification step. 

Next, a probabilistic choice determines the final 
candidate solution for this iteration. With a probability 𝑟𝑖 

(the bat's pulse rate), the algorithm enters the 
intensification phase (line 21 to line 27). It selects a 
random solution 𝑥′ from the bat’s elite memory, and 

applies Eq. (23) with 𝑣𝑖 = 1 and 𝑓𝑖 = 𝑓𝑚𝑖𝑛 to perform a 

single, focused local move to generate a locally-refined 
solution 𝑥′ (line 23). A critical check occurs: this refined 

solution 𝑥′ is only adopted if it is superior to the actual 

solution 𝑥𝑖 (line 24). This ensures that intensification is 

only pursued if it yields a tangible improvement. 
Otherwise, if the intensification condition is not met 
(with probability 1 − 𝑟𝑖), the algorithm forgoes this 
extra local search. It directly updates 𝑥𝑖 by the best 

solution, 𝑥𝑑𝑖𝑣, from the diversification phase (line 26).  

Algorithm 3: Hybrid B-ALNS 

  Input: objective function 𝑓(𝑥), population size 𝑛, 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥, bat memory list size 𝑀, frequency bounds 

𝑓𝑚𝑖𝑛/𝑓𝑚𝑎𝑥, parameters 𝛼, 𝛾, removal set 𝑅𝑂 =
{𝑟𝑒𝑚₁ … 𝑟𝑒𝑚₄}, insertion operator 𝐼𝑁𝑆 

  Output: global solution x∗ 

  1. initialize population 𝑋 =  {𝑥₁, … , 𝑥ₙ} via k-regret 

insertion heuristic 
  2. for each bat 𝑖 in population do 

  3.     evaluate fitness 𝑓(𝑥𝑖); initialize pulse rate 𝑟𝑖
0 

and loudness 𝐴𝑖
0 

  4.     initialize the weights of the removal and insertion 
operators to 1 
  5.   initialize each bat’s memory with its initial solution 
𝑥𝑖 

  6. end for 
  7. initialize the global solution 𝑥∗ as the best initial 

bat 
  8. for 𝑡 =  1 …  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 , do    

  9.     for each bat 𝑖 in population do     

10.         adjust the frequency 𝑓𝑖 via Eq. (14) [7]    

11.         update the velocity 𝑣ᵢ via Eq. (22) [2] 

              // Diversification step  
12.         for 𝑘 = 1 … 𝑣ᵢ do     

13.             choose removal and insertion operator via     
                  Roulette-Wheel mechanism 
14.             generate new solutions using Eq. (23) 
15.         end for 
16.         𝑥𝑑𝑖𝑣 ← best generated solution 

17.         if 𝑓(𝑥𝑑𝑖𝑣) < 𝑓(𝑥ᵢ) then  

18.              increase the weights of the removal and  
                   insertion operators by σ 
19.         end if 

              // Bat memory update 
20.         update bat memory list with 𝑥𝑑𝑖𝑣 

              // Intensification step 
21.         if 𝑟𝑎𝑛𝑑() > 𝑟ᵢ then 

22.               select a random solution 𝑥′ from the bat’s       

                   memory list 
23.               apply a local 𝑅&𝐼 move on 𝑥′ Eq. (23) 

24.               if 𝑓(𝑥′) < 𝑓(𝑥ᵢ) then 𝑥ᵢ ← 𝑥′ end if 

25.         else 
26.               𝑥ᵢ ← 𝑥𝑑𝑖𝑣 

27.         end if 

              // Acceptance and update 
28.         if 𝑟𝑎𝑛𝑑() < 𝐴ᵢ and f(𝑥ᵢ) < 𝑓(𝑥∗) then 𝑥∗ ← 𝑥ᵢ 
end if 
29.         update 𝑟ᵢ  Eq. (19) [7] and 𝐴ᵢ  Eq. (21) [2] 

30.     end for 
31. end for 
32. return 𝑥∗ 
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Finally, the decision to accept 𝑥𝑖 as the global 

solution 𝑥∗ is governed entirely by the Bat Algorithm's 

core acceptance mechanism (line 28). which considers 
both solution quality and the current loudness 𝐴𝑖, as 

defined in Eq. (21) [2]. This mechanism allows the 
algorithm to occasionally accept worse solutions, 
particularly in the early search stages, which is crucial 
for escaping local optima. The bat's loudness and pulse 
rate are then updated using Eq. (19) and Eq. (21) [2] for 
the next iteration (line 29), ensuring a dynamic balance 
between exploration and exploitation. This entire 
process repeats for all bats in the population until the 
termination criterion, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, is reached (line 31). At 

that point, the algorithm concludes and returns the 
global best solution 𝑥∗ found across all bats and all 

iterations (line 32). 

This integrated process, where BA provides high-
level strategic direction (how many moves to make, 
whether to intensify or intensify the search) and ALNS 
provides the tactical execution (performing the moves 
themselves), ensures a robust and well-coordinated 
search process, and remains robust across the rich 
constraints of the MDHF-VRPTW-SPD. 

V. Computational experiments 

In this section, we describe our computational 
experiments. First, we describe the characteristics of 
the MDHF-VRPTW-SPD problem test instance, 
followed by detailed and extensive computational 
experiments. 

A. The benchmark proposed for the MDHF-VRPTW-

SPD: 

To the best of our knowledge, no public benchmark 
simultaneously covers multi-depot, heterogeneous 
fleet, hard time windows, and simultaneous pickup-
and-delivery; existing data sets omit at least one of 
these dimensions. In this sense, and adhering to the 
instance-generation guidelines in [43], we extended the 
multi-depot time-window data of Cordeau et al. [44] to 
produce a deterministic suite of 20 MDHF-VRPTW-
SPD instances spanning 48 to 288 customers served 
by four to six depots. All customer coordinates, number 
of depots and their limits 𝐷, and time windows [𝑒𝑖 , 𝑙𝑖] 
were kept intact, while 3 deterministic steps enriched 
the data, to reflect real-world pharmaceutical-
distribution operations: 

Demand categories: each customer 𝑖 is first 

assigned to one of three classes as in Eq. (24) to a 
uniform draw 𝑢𝑖 ∈ [0,1]: 

𝑐𝑎𝑡𝑖 = {

𝐴 ∶  𝑢𝑖 < 0.7          
𝐵 ∶  0.7 ≤ 𝑢𝑖 < 0.9
𝐶 ∶  𝑢𝑖 ≥ 0.9

 (24) 

Where category 𝐴 is delivery and low return, 𝐵 is delivery 

and significant return and 𝐶 is return only. 

The original Cordeau delivery demand 𝐷𝑖 is retained 

for Categories A and B, while Category C receives 𝐷𝑖 =
0. Pickup quantities 𝑃𝑖 are then generated by Eq. (25): 

𝑃𝑖 = {

⌈𝑟𝐴𝐷𝑖⌉: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐴
⌈𝑟𝐵𝐷𝑖⌉: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦  𝐵

𝑟𝑎𝑛𝑑[1, min{3, ⌈0.15𝐷̅⌉}]:  𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐶

 (25) 

Where 𝑟𝐴 ∼ 𝑈[0.05,0.20], 𝑟𝐵 ∼ 𝑈[0.20,0.50] and 𝐷̅ is the 

average delivery demand in the instance. This 
produces a realistic portfolio in which roughly 70 % of 
service points receive medications and hand back 
small quantities of waste or expired drugs, 20 % return 
a substantial share, and 10 % are pure pickup stops, 
giving an overall pickup volume of about 25 % of total 
deliveries, consistent with reported pharmaceutical 
reverse-logistics volumes. 

Service time: To reflect simultaneous handling, the 
original service duration 𝑑𝑖 from Cordeau et al. instances 

[44] was divided into delivery service time 𝑑𝑖
𝑑𝑒𝑙  and 

pickup service time 𝑑𝑖
𝑝𝑖𝑐𝑘

 using Eq. (26) and Eq. (27): 

𝑑𝑖
𝑑𝑒𝑙 = 𝑏𝑎𝑠𝑒𝑖 + (𝑑𝑖 + 2𝑏𝑎𝑠𝑒𝑖)

𝐷𝑖

𝑇𝑖
 (26) 

𝑑𝑖
𝑝𝑖𝑐𝑘 = 𝑏𝑎𝑠𝑒𝑖 + (𝑑𝑖 − 2𝑏𝑎𝑠𝑒𝑖)

𝑃𝑖

𝑇𝑖
 (27) 

Where 𝑏𝑎𝑠𝑒𝑖 = 𝑚𝑖𝑛(0.2𝑑𝑖 , 1), the total demand 𝑇𝑖 =
𝐷𝑖 + 𝑃𝑖, 𝐷𝑖 > 0 and 𝑃𝑖 > 0. Pickup-only stops keep the 

full original 𝑑𝑖, and if 𝑒𝑖 + 𝑑𝑖
𝑑𝑒𝑙 + 𝑑𝑖

𝑝𝑖𝑐𝑘 > 𝑙𝑖, the latest 

time 𝑙𝑖 is shifted just enough to accommodate the total 

service time and no other time windows are altered. 

Four-class heterogeneous fleet: Each depot now 
offers four vehicle types 𝑘 ∈ {1, 2, 3, 4}  with capacities 

with capacities 𝑄𝑘, fixed dispatch costs 𝐹𝑘, and 

distance-proportional costs 𝛼𝑘, defined in Eq. (28) to 

Eq. (30). 

𝑄𝑘 = {0.25, 0.50, 0.80, 1.20}𝑄∗ (28) 

𝐹𝑘 = 60 + 60(𝑘 − 1) (29) 

𝛼𝑘 = 0.45 + 0.15(𝑘 − 1) (30) 

 

where 𝑄∗ is the single-type capacity in the 
original Cordeau et al. [44] data files. The 
vehicle capacities were defined to ensure that 
for any given customer 𝑖, the total demand 𝑇𝑖 

does not exceed the capacity of the smallest 
available vehicle. 

B. Parameter settings and calibration: 

To ensure methodological transparency and 
reproducibility, all parameters for the hybrid B-ALNS, 
the discrete BA, and the simple LNS are explicitly 

defined in Table 1. The selection of these parameters 
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was guided by a combination of systematic calibration 
for the most sensitive parameters and standard values 
from the literature for baseline components. 

A calibration procedure was performed to 
determine the key parameters for the hybrid B-ALNS, 
focusing on balancing solution quality against 
computational effort. We applied a two-stage factorial 
design on the on VRP02-n96 instance test with 96 
customers. An initial broad search with a varying 
population size 𝑁 =  {40, 80, 120, 160}, 
maximum iterations 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = {200, 350, 500, 650}, and 

destruction fraction 𝑓𝑚𝑎𝑥  = {0.05, 0.20, 0.35, 0.50}, 
reveals that solution quality gains saturate once the 
population exceeds 80 to 120 bats, with negligible 
gains observed beyond 500 iterations. It also showed 
that setting the maximum destruction rate 𝑓𝑚𝑎𝑥  below 5 

% provided too little perturbation, causing the search to 
stagnate in the local optima, while removing more than 
40% resulted to inefficient, near-random search.  

Following this, we conducted a finer search within 
the most promising intervals: population size ranging 
from 90 to 110, iteration limits from 450 to 550, and 
destruction rates from 0.07 to 0.40 in increments of 
0.025. Multiple configurations were evaluated, and the 
final setting was selected based on the best cost-to-
time performance ratio: a population of 100 bats, a 500 
iterations limit, and a destruction rate drawn each 
iteration from the uniform distribution 𝑈[0.075,0.4]. The 

population size retains sufficient diversity to prevent 
premature convergence yet keeps the largest 288-
customer instances within a three-minute 
computational time. The core BA parameters of our 

hybrid method, 𝛼, 𝛾, initial loudness 𝐴𝑖
0 and the Initial 

pulse rate 𝑟𝑖
0 were set to values commonly used in the 

literature [7]. While this calibration identified a robust 
set of parameters for our benchmark suite, a full-scale 
sensitivity analysis across all parameters was 
considered beyond the scope of this study.  

For a fair and rigorous comparison, the parameters 
for the benchmark algorithms were aligned with the 
calibrated Hybrid B-ALNS where appropriate. The 
Discrete BA mirrors the core settings derived from our 
calibration, using the same population size (100), 
maximum iteration (500), update parameters (𝛼 =
 𝛾 =  0.98), initial loudness, and initial pulse rate. This 

ensures that any performance difference is attributable 
to the algorithmic structure rather than parameter 
tuning. The single-solution LNS was allotted a 
comparable search effort of 5000 iterations, with its 
destruction fraction also drawn from the calibrated 
range 𝑈[0.07, 0.4]. The primary termination criterion for 

all algorithms was a fixed number of maximum 
iterations, as detailed in Table 1. To ensure a high-
quality starting point, all methods were initialized using 
construction heuristics. The hybrid B-ALNS employs a 
more advanced k-regret insertion (with k=2) to seed its 
population, reflecting its sophisticated design. In 
contrast, the baseline Discrete BA and LNS were 
initialized with a standard best-insertion heuristic. The 
elite memory size (M=10) offers a sufficient pool of 
high-quality solutions for intensification without 
significant computational overhead, and the roulette-
wheel reward (σ=0.2) is a standard value that 

Table 1. Parametrization of Hybrid B-ALNS, Discrete BA and LNS. 

Parameters Hybrid B-ALNS Discrete BA LNS 

Population size 100 100 1 

Initialization heuristic k-regret insertion (𝑘 = 2) Best insertion Best insertion 

Maximum iterations 500 500 5000 

Update parameters 𝛼 & 𝛽 0.98, 0.98 0.98, 0.98 N/A 

Initial loudness 𝐴𝑖
0 𝑈[0.7,1]  𝑈[0.7,1]  N/A 

Initial pulse rate 𝑟𝑖
0    𝑈[0.05,0.3]  𝑈[0.05,0.3]  N/A 

Frequency 
[𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥]/destruction rate  

𝑈[0.075,0.4]  𝑈[0.075,0.4]  𝑈[0.075,0.4] 

Bat memory M 10 N/A N/A 

Successor operator 
k-regret insertion (𝑘 = 4) 

Random, Cluster, Shaw & 
Worst ruin 

2-opt & 3-opt 
Best insertion 
Random & Radial Ruin 

    

Operator Selector roulette-wheel (𝜎 = 0.2)  random random 

Acceptance Criterion 
BA Loudness-based (Eq. 
20) 

BA Loudness-
based (Eq. 18) 

Simulated Annealing 
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effectively balances operator exploitation and 
exploration. 

The Discrete BA relies on a classic 2-opt/3-opt 
local search as its successor operator, consistent with 
its original formulation [2]. Finally, the simple LNS was 
deliberately designed with a limited set of operators, 
Random and Radial Ruin with Best Insertion, to serve 
as a lightweight but effective baseline, highlighting the 
added value of the hybrid's adaptive, multi-operator 
framework. 

C. Results 

All numerical experiments were performed on a 
computer powered by an Intel Core i5 (12th-generation, 
2.5 GHz base clock) and 16 GB of DDR4 RAM. The 
complete set of 20 MDHF-VRPTW-SPD benchmark 
instances was evaluated. Furthermore, each instance 
was subjected to 20 independent runs. As noted in the 
introduction, we conducted a comprehensive 
comparison between our proposed hybrid B-ALNS, the 
discrete Bat Algorithm (BA), and a straightforward 
Large Neighborhood Search (LNS). We selected 
discrete BA and simple LNS as benchmarks because 
they represent two well-established metaheuristic 

paradigms, swarm-based exploration and ruin-and-
recreate intensification, that have proven effective 
across numerous routing applications. Demonstrating 
that B-ALNS consistently achieves lower routing costs 
than these standard approaches would underscore its 
strength and versatility as a metaheuristic for the 
complex MDHF-VRPTW-SPD. 

Analyzing the solution quality (average cost) from 
Table 2, our proposed Hybrid B-ALNS consistently 
demonstrates superior performance. Its mean cost of 
3710.15 is 1.15 % lower than that of the discrete BA 
(3753.59) and 2.78 % below LNS (3815.83). Delving 
into instance-specific performance, Hybrid B-ALNS 
obtained better average costs than Discrete BA in 85% 
of instances (17 out of 20) and outperformed LNS in 
100%. These findings on average performance are 
further corroborated by examining the best solutions for 
each instance, as presented in Table 3. The hybrid B-
ALNS obtained the best solution in  85% of the 
instances (17 out of 20), whereas Discrete BA tops the 
remaining three, and LNS never leads. The advantage 
of B-ALNS comes from pairing wide exploration, via 
frequency-controlled destroy-and-repair moves, with 
focused refinement driven by bat memory and adaptive 

Table 2. Comparative performance of Hybrid B-ALNS, BA, and LNS across 20 benchmark instances. 

Instance 
name 

Hybrid B-ALNS Discrete BA LNS 

 Avg 
Cost 

S. dev. 
Avg 
Time (s) 

Avg 
Cost 

S. 
dev. 

Avg 
Time (s) 

Avg 
Cost 

S. 
dev. 

Avg 
Time (s) 

VRP01-n48 1225.22 8.97 9 1266.42 17.98 2.89 1280.45 34.79 0.85 

VRP02-n96 2034.77 19.34 34.61 2119.24 19.62 10.38 2153.95 38.23 2.48 

VRP03-n144 3087.72 31.99 73.91 3162.01 29.69 20.68 3211.3 50.46 4.86 

VRP04-n192 4235.67 39.58 154.6 4337.99 44.15 52.4 4401.1 66.72 14.09 

VRP05-n240 5488.39 44.48 211.92 5535.7 45.35 43.97 5614.24 59.49 9.67 

VRP06-n288 6101.87 54.24 263.85 6229.31 57.04 64.56 6269.31 86.29 13.87 

VRP07-n72 1637.49 21.02 28.44 1714.33 18.74 8.94 1734.09 49.1 2.22 

VRP08-n144 3217.7 39.67 104.5 3311.11 25.16 27.78 3389.31 49.3 6.23 

VRP09-n216 4541.33 34.72 209.15 4652.73 53.4 56.85 4727.26 79.53 11.99 

VRP10-n288 6252.16 57.48 461.67 6291.37 54.85 190.63 6361.02 89.36 35.92 

VRP11-n48 1097.34 17.52 18.9 1131.44 16.06 5.8 1156.13 36.32 1.75 

VRP12-n96 2043.88 24.3 68.94 2084.34 22.74 21.08 2122.45 32.79 4.83 

VRP13-n144 2950.89 31.83 145.47 2993.42 45.48 42.83 3092.01 60.05 10.02 

VRP14-n192 4038.88 39.3 259.42 4043.83 25.34 76.9 4127.68 72.84 15.17 

VRP15-n240 5202.81 43.8 352.66 5148.22 38 87.01 5223.74 53.42 18.95 

VRP16-n288 5803.97 38.69 376.07 5773.41 41.4 138.3 5891.61 96.68 30.35 

VRP17-n72 1490.27 12.6 62.27 1530.36 18.34 22.65 1567.17 47.41 5.93 

VRP18-n144 3150.73 15.58 125.45 3178.2 25.02 33.07 3229.77 60.16 7.09 

VRP19-n216 4326.77 38.68 245.75 4335.83 44.7 65.67 4383.49 48 13.57 

VRP20-n288 6275.22 78.55 446.51 6232.53 66.59 108.32 6380.61 88.04 22.44 

Average 3710.15 34.62 
 

182.65 3753.59 35.48 54.04 3815.83 59.95 11.61 
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operator scores, letting it avoid the local optima that 
limit BA and LNS. 

Beyond cost minimization, Table 3 also offers 

insights into the structural quality of these best 
solutions. The 'Route Balance CV' for solutions found 
by Hybrid B-ALNS consistently indicates well-balanced 
routes, with low CV values (e.g., ranging from 0.1071 
on VRP03-n144 to 0.2276 on VRP01-n48). For the 
instances where Discrete BA found the best solution, 
route balance CV values were also low (e.g., 0.1310 on 
VRP15-n240). These low CVs suggest an even 
distribution of workload among vehicles. Furthermore, 
the Load Distribution Quality metric, representing the 
standard deviation of vehicle capacity utilization, is 
notably low for the best solutions. For Hybrid B-ALNS, 
these values (e.g., 1.89 for VRP01-n48 to 6.96 for 
VRP14-n192) and for Discrete BA (e.g., 3.22 for 
VRP15-n240 to 5.58 for VRP20-n288) fall well within 
the 0-10 percentage point range, signifying a very 
balanced fleet distribution.  

To provide deeper insight into the algorithm’s 
learning process and internal stability, and to 
supplement the average performance data in the 

tables, Fig. 2, Fig. 3, and Fig. 4 illustrate the 

convergence rate of the B-ALNS population for the best 
run on small, medium, and large-scale instances. 
Several key performance characteristics are evident 

across the different scales. First, the algorithm 
demonstrates rapid convergence. For the small-scale 
instance VRP01-n48 (Fig. 2), the best solution cost of 
1203.97 was found in just 5.52 seconds, achieving a 
total improvement of 20.3%. The medium-scale 
VRP03-n144 (Fig. 3) shows a steep initial improvement 
within the first 120 iterations, ultimately finding its best 
solution of 3042.71 after 65.04 seconds of 
computation, securing a total cost reduction of 28.57%. 
This pattern of substantial early gains followed by 
continued refinement is most pronounced in the large-
scale instance VRP06-n288 (Fig. 4), which achieved a 
29.39% improvement, finding its best solution of 6031.4 
after 253.3 seconds. This confirms that the algorithm 
efficiently explores the solution space, regardless of 
problem size. Second, the plots visually confirm the 
algorithm's strong population stability. For the small 
and medium instances (Fig. 2 and Fig. 3), the gap 
between the best (blue line), average (green line), and 
worst (red line) solutions in the population narrows 
dramatically. It becomes nearly indistinguishable after 
the initial convergence phase. This demonstrates that 
the entire population is effectively guided toward a very 
focused, high-quality region of the search space. While 
a small gap persists in the more complex large-scale 
instance (Fig. 4), the population still converges to a 
tight band, showcasing a high degree of stability even 

Table 3. Characteristics of the average solutions obtained by the best algorithm for each instance. 

Instance name Avg cost Vehicles Route balance CV Load distribution quality Algorithm 

VRP01-n48 1225.22 9 0.2276 1.89 B-ALNS 

VRP02-n96 2034.77 14 0.1390 4.22 B-ALNS 

VRP03-n144 3087.72 20 0.1071 3.88 B-ALNS 

VRP04-n192 4235.67 27 0.1569 5.10 B-ALNS 

VRP05-n240 5488.39 30 0.1870 3.19 B-ALNS 

VRP06-n288 6101.87 35 0.1649 3.00 B-ALNS 

VRP07-n72 1637.49 13 0.1984 5.50 B-ALNS 

VRP08-n144 3217.7 22 0.1468 5.08 B-ALNS 

VRP09-n216 4541.33 27 0.1098 3.33 B-ALNS 

VRP10-n288 6252.16 39 0.1604 6.48 B-ALNS 

VRP11-n48 1097.34 6 0.1293 3.00 B-ALNS 

VRP12-n96 2043.88 13 0.1739 3.40 B-ALNS 

VRP13-n144 2950.89 17 0.1969 3.18 B-ALNS 

VRP14-n192 4038.88 22 0.1792 6.96 B-ALNS 

VRP15-n240 5148.22 23 0.1310 3.22 Discrete BA 

VRP16-n288 5773.41 27 0.1397 3.51 Discrete BA 

VRP17-n72 1490.27 11 0.1147 5.87 B-ALNS 

VRP18-n144 3150.73 18 0.2238 3.27 B-ALNS 

VRP19-n216 4326.77 23 0.1820 3.48 B-ALNS 

VRP20-n288 6232.53 28 0.1786 5.58 Discrete BA 
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under challenging conditions. This collective 
convergence is responsible for the low standard 
deviation of costs reported across multiple runs in 
Table 2. 

Finally, the algorithm successfully avoids premature 
stagnation. Even after the initial rapid descent, minor, 
step-wise improvements are visible in the later 
iterations of all three plots. This is particularly 
noticeable in the large-scale instance (Fig. 4) between 

iterations 200 and 500, showcasing the effectiveness 
of the adaptive destroy-and-repair operators in 
continuously refining complex solutions long after 
simpler heuristics might have stalled.  

In terms of computational effort (average time in 
seconds), the results in Table 2 highlight a classic 
trade-off between solution quality and runtime. The 
simple LNS is the quickest, averaging 11.61 seconds, 
followed by the Discrete BA at 54.04 seconds. The 
Hybrid B-ALNS, while delivering consistently superior 
solutions, required the most computation time, 
averaging 182.65 seconds per run. This increased 
effort is a direct consequence of its more sophisticated 

search mechanics, particularly the k-regret insertion 
heuristic. Regarding the algorithms' robustness and 
consistency, reflected by the standard deviation (S. 
dev.) of the solution costs in Table 2, Hybrid B-ALNS 
demonstrates the highest consistency, with the lowest 
value of 34.617. Discrete BA also shows good 
robustness, with a value of 35.4825. LNS is the 
quickest method, but its solution quality varies the 
most.  

Because no public data set combines all four 
features of our full model (MDHF-VRPTW-SPD), we 
benchmarked the hybrid algorithm on the Cordeau 
MDVRPTW instances, which is the closest subset of 
the problem, to compare our approach with leading 
heuristics from the literature. Table 4 summarizes the 
best costs from ten independent B-ALNS runs 
alongside Firefly Algorithm (FA) [30], Tabu Search (TS) 

 

Fig. 3. Convergence rate of the Hybrid B-ALNS for 
the best run on VRP03-n144 (Medium scale). 

 

 

Fig. 4. Convergence rate of the Hybrid B-ALNS for 
the best run on VRP06-n288 (Large scale). 

z 

Fig. 2. Convergence rate of the Hybrid B-ALNS for 
the best run on VRP01-n48 (Small scale). 
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[6], Ant Colony Optimization (ACO) [28] and the stand-
alone ALNS [45]. 

The hybrid achieves the lowest cost on every 
instance when compared with FA, TS, and ACO. Its 
advantage over ACO ranges from 1.2% on the easiest 
example to 22.7% on the most difficult. Regarding FA 
and TS, the gain reaches 9.1% on instance pr06. 
Compared to the ALNS, our hybrid B-ALNS is superior 
or equal in six cases, has ties in pr01, and slightly 
outperforms pr03, pr05, and pr09. On average, our 
approach reduces cost by 0.33% compared with stand-
alone ALNS. The adaptive destroy-repair layer, 
especially the worst-removal and regret-insertion 
operators, refines routes that the single-solution ALNS 
sometimes leaves sub-optimal, while the frequency-
guided bat population prevents the search stagnation 
observed in ACO for depot-rich networks. Solution 
times remain within seven to 272 seconds for problems 
with 288 customers, which is fast enough for daily 
tactical planning. 

D. Statistical analysis of the results: 

To formally validate that the performance differences 
observed in Table 2 are not due to random variation, we 
conducted a non-parametric statistical analysis. First, an 
omnibus Friedman test was applied to the best costs 
obtained by the three algorithms across the 20 
benchmark instances. The resulting statistic yielded a 
Friedman statistic of 17.2 with a p-value of 0.0002. This 
p-value, being substantially less than the conventional 
significance level of 0.05, indicates statistically 
significant differences in the performance of at least one 
algorithm compared to the others. 

To identify which specific pairs of algorithms differ, 
we first applied Nemenyi’s post-hoc test, with the results 

shown in Table 5. The test identified a significant 
difference between the Hybrid B-ALNS and LNS (𝑝 =
 0.011). Although the difference between Hybrid B-ALNS 

and Discrete BA (p = 0.2209) does not cross the 0.05 
threshold, B-ALNS still shows the lowest mean cost in 
17 of 20 cases.  

For a more detailed and sensitive pairwise 
comparison, we conducted a two-tailed Wilcoxon 
signed-rank test, using Hybrid B-ALNS as the reference 
algorithm. Table 6 provides a comprehensive, instance-
by-instance summary of this comparison. The "+/=/-" 
notation indicates instances where the reference 
algorithm (Hybrid B-ALNS) performed better, equal to, or 
worse than the competing algorithm. The "Avg. % Diff" 
column quantifies the average percentage improvement 
of B-ALNS over the other methods (positive when better, 
negative when worse). As the table shows, B-ALNS 
outperformed the Discrete BA on 15 out of 20 instances 
(with 3 ties) for an average cost reduction of 1.71%, and 
it outperformed LNS on 19 out of 20 cases (with 1 tie) for 
an average decrease of 3.46%. We aggregated the 

results using the R statistical computing environment to 
confirm that these observed trends are statistically 
significant. The test comparing Hybrid B-ALNS to 
Discrete BA yielded a highly significant result (𝑉 =  28,
𝑍 =  −2.875 𝑎𝑛𝑑 𝑝 =  0.0027), with a 95% confidence 

Table 4. Best routing cost of 10 independent Hybrid B-ALNS runs, against FA, ACO and TS on MD-VRPTW 
instances. 

Instance name 

Hybrid B-ALNS 
Firefly 
Algorithm 
[30] 

Ant Colony 
Optimization 
[28] 

Tabu 
Search 
[6] 

ALNS 
 [45] 

Best S. dev. 
Avg Time 
(s) 

Best Best Best Best 

pr01 1074.12 1078.61 6.79 1083.98 1086.85 1083.98 1074.12 

pr02 1734.61 1766.24 24.76 1763.02 1768.96 1763.07 1762.21 

pr03 2400.41 2414.87 51.5 2408.43 2655.38 2408.42 2373.65 

pr04 2786.08 2823.67 72.1 2958.21 3605.49 2958.23 2836.59 

pr05 3010.95 3031.39 73.38 3134.04 3785.49 3134.04 2968.81 

pr06 3547.91 3575.78 111.35 3904.16 4356.26 3904.07 3620.71 

pr07 1415.64 1420.33 11.62 1423.33 1464.67 1423.35 1418.22 

pr08 2085.97 2098.47 40.26 2150.22 2446.31 2150.22 2096.73 

pr09 2741.86 2765.52 153.23 2831.95 3467.28 2833.80 2730.86 

pr10 3489.99 3527.11 271.48 3714.77 4241.06 3717.22 3498.23 

 

Table 5. Nemenyi Post-hoc Test (p-values) 

Algorithm Hybrid B-ALNS Discrete BA LNS 

Hybrid B-ALNS - 0.2209 0.011 

Discrete BA 0.2209 - 0.7907 

LNS 0.011 0.7907 - 
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interval for the median cost difference of 
[−68.21, −22.52]. 

This formally proves the superiority of the hybrid 
approach. The comparison with LNS was even more 
statistically decisive (𝑉 =  0, 𝑍 =  −3.920 𝑎𝑛𝑑 𝑝 <
 0.0001), with a 95% confidence interval of 

[−126.54, −82.85]. These aggregated statistics provide 

the formal evidence to support the instance-level results 
in Table 6, confirming that the Hybrid B-ALNS is 
significantly more effective than both baseline 
algorithms.  

E. Discussion 

The superior cost-minimization achieved by the hybrid 
B-ALNS stems from how its adaptive removal and 
insertion phase complements the frequency-guided 
exploration of the Bat algorithm core. During search, 
the roulette-wheel mechanism continually re-weights 
the four removal operators according to their recent 
contribution to improvement, allowing the algorithm to 
pivot toward the neighborhood structure most likely to 
unlock further savings. Optimization logs show that 
worst-removal dominates, succeeding on 77.9 % of the 
calls that led to an accepted solution; by ejecting the 
highest-cost customers, it systematically dismantles 
expensive route segments that the discrete BA’s 2-
opt/3-opt moves cannot access. Random removal 

(29.28 %) provides the diversification needed to 
escape medium-sized basins, while Shaw removal 
(16.49 %) and the more selective cluster-based 
heuristic (6.33 %) target geographically or temporally 
cohesive subsets, refining route balance once the 
solution is near a local optimum. Crucially, every 
removal phase is paired with regret-k insertion, which 
evaluates multiple alternative positions for each 
reinserted node and chooses the placement that would 
cause the greatest future penalty if postponed. This 
explains why the hybrid costs 1.15% and 2.78 % 
greater cost reduction compared tothe other methods. 

Analyzing the results in Table 2 across instance 
sizes reveals a key strength of the hybrid approach. 
While the runtimes for all methods scale with problem 
size, the solution quality gap between B-ALNS and the 
baseline methods widens on larger instances. For 
example, the average cost advantage of B-ALNS over 
LNS nearly triples from approximately 55 units on the 
VRP01-n48 instance to over 167 units on the VRP06-
n288 instance. A similar, though less pronounced, 
trend is observed against the Discrete BA, where the 
cost gap increases from 41 units to nearly 128 units. 
This trend suggests that the sophisticated search 
mechanics of B-ALNS provide a compounding 

Table 6. pairwise Wilcoxon signed-rank analyses 

Instance Hybrid B-ALNS Discrete BA LNS 

VRP01-n48 1.23E+03±8.97E+00 1.27E+03±1.80E+01+ (-3.4%) 1.28E+03±3.48E+01+ (-4.5%) 

VRP02-n96 2.03E+03±1.93E+01 2.12E+03±1.96E+01+ (-4.2%) 2.15E+03±3.82E+01+ (-5.9%) 

VRP03-n144 3.09E+03±3.20E+01 3.16E+03±2.97E+01+ (-2.4%) 3.21E+03±5.05E+01+ (-4.0%) 

VRP04-n192 4.24E+03±3.96E+01 4.34E+03±4.42E+01+ (-2.4%) 4.40E+03±6.67E+01+ (-3.9%) 

VRP05-n240 5.49E+03±4.45E+01 5.54E+03±4.53E+01+ (-0.9%) 5.61E+03±5.95E+01+ (-2.3%) 

VRP06-n288 6.10E+03±5.42E+01 6.23E+03±5.70E+01+ (-2.1%) 6.27E+03±8.63E+01+ (-2.7%) 

VRP07-n72 1.64E+03±2.10E+01 1.71E+03±1.87E+01+ (-4.7%) 1.73E+03±4.91E+01+ (-5.9%) 

VRP08-n144 3.22E+03±3.97E+01 3.31E+03±2.52E+01+ (-2.9%) 3.39E+03±4.93E+01+ (-5.3%) 

VRP09-n216 4.54E+03±3.47E+01 4.65E+03±5.34E+01+ (-2.5%) 4.73E+03±7.95E+01+ (-4.1%) 

VRP10-n288 6.25E+03±5.75E+01 6.29E+03±5.48E+01+ (-0.6%) 6.36E+03±8.94E+01+ (-1.7%) 

VRP11-n48 1.10E+03±1.75E+01 1.13E+03±1.61E+01+ (-3.1%) 1.16E+03±3.63E+01+ (-5.4%) 

VRP12-n96 2.04E+03±2.43E+01 2.08E+03±2.27E+01+ (-2.0%) 2.12E+03±3.28E+01+ (-3.8%) 

VRP13-n144 2.95E+03±3.18E+01 2.99E+03±4.55E+01+ (-1.4%) 3.09E+03±6.00E+01+ (-4.8%) 

VRP14-n192 4.04E+03±3.93E+01 4.04E+03±2.53E+01= (-0.1%) 4.13E+03±7.28E+01+ (-2.2%) 

VRP15-n240 5.20E+03±4.38E+01 5.15E+03±3.80E+01- (+1.0%) 5.22E+03±5.34E+01= (-0.4%) 

VRP16-n288 5.80E+03±3.87E+01 5.77E+03±4.14E+01- (+0.5%) 5.89E+03±9.67E+01+ (-1.5%) 

VRP17-n72 1.49E+03±1.26E+01 1.53E+03±1.83E+01+ (-2.7%) 1.57E+03±4.74E+01+ (-5.2%) 

VRP18-n144 3.15E+03±1.56E+01 3.18E+03±2.50E+01+ (-0.9%) 3.23E+03±6.02E+01+ (-2.5%) 

VRP19-n216 4.33E+03±3.87E+01 4.34E+03±4.47E+01= (-0.2%) 4.38E+03±4.80E+01+ (-1.3%) 

VRP20-n288 6.28E+03±7.85E+01 6.23E+03±6.66E+01= (+0.7%) 6.38E+03±8.80E+01+ (-1.7%) 

+/=/−  15/3/2 19/1/0 

Avg. % Diff  -1.71% -3.46% 
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advantage as the solution space expands and better 
scalability for complex, large-scale problems. 

A critical analysis also reveals scenarios where B-
ALNS was not superior. The Discrete BA found better 
solutions on three large-scale instances (VRP15, 
VRP16, and VRP20) (Table 3). This suggests that for 
certain large-scale instances, the powerful but 
disruptive destroy-and-repair operators of ALNS may 
occasionally break apart a delicate, near-optimal 
structure. In these cases, the more conservative 2-
opt/3-opt refinement of the BA proves more effective for 
final optimization.  

To contextualize the results presented in Table 4, 
we benchmarked the performance of all five 
algorithms against the Best Known Solutions (BKS) 
for the Cordeau et al. instances, as reported in the 
NEO research group's public repository 
(neo.lcc.uma.es). Table 7 summarizes this analysis, 
showing the average percentage deviation (gap) 
from the BKS and the number of new BKS found by 
each method. A negative gap indicates an 
improvement over the previously published BKS. 
Our proposed B-ALNS algorithm not only achieved 
the best overall performance with an average 
improvement of 3.46% over the BKS, but it also 
discovered better alternative solutions for all 10 
benchmark instances. This performance surpasses 
that of the standalone ALNS [45], which also proved 
highly effective but did not improve upon one 
instance. In contrast, other methods like Tabu 
Search [6] and Ant Colony Optimization [28] were, 
on average, unable to match the quality of the BKS. 

The trade-off between solution quality and 
computational effort is well-justified within the practical 
context of healthcare logistics. The VRP is typically a 
tactical planning problem, where routes are determined 
hours or even a day in advance, not in real-time. In 
such a planning environment, an optimization runtime 
of a few minutes is a negligible investment when 
weighed against the benefits of a superior solution. The 
resulting 1% to 3% reduction in operational costs, 
compounded daily, may lead to substantial annual 
savings. Furthermore, the higher consistency and 
improved balance of the routes generated by B-ALNS 
contribute to more reliable service, which is a critical 
priority in medical logistics.  

While a formal complexity analysis of the hybrid B-
ALNS is intricate, its computational cost is primarily 
driven by the most intensive phase: the k-regret 
insertion heuristic within the ALNS engine. The 
complexity of a single remove and insertion operation 
is influenced by the number of customers to be 
removed 𝑚 and the total number of customers 𝑁. For 

each of the 𝑚 removed customers, the k-regret 

heuristic must evaluate potential insertion positions 
across all routes, leading to significant cost 
calculations. Consequently, the algorithm's runtime 
scales polynomially with the problem size 𝑁. This is 

empirically confirmed in Table 2, where the average 
runtime increases from 9 seconds for 48 customers to 
over 7 minutes for the largest 288-customer instances. 
The main parameters influencing this scalability are the 
population size 𝑛, the maximum number of iterations 
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 , and the destruction fraction 𝑓𝑚𝑖𝑛/𝑓𝑚𝑎𝑥, which 

determines 𝑚. No specific optimization techniques to 

reduce runtime, such as maintaining a memory of 
previously evaluated move costs, were employed in 
this study, leaving this as a key avenue for future work 
to enhance performance for large-scale or real-time 
applications. 

The findings of this research offer several important 
implications. From a practical standpoint, the validated 
B-ALNS algorithm provides a powerful decision-
support tool for pharmaceutical distributors. The 
demonstrated ability to consistently reduce routing 
costs can lead to substantial annual operational 
savings, while the generation of well-balanced and 
robust routes enhances service reliability, a critical 
priority in healthcare logistics. By efficiently integrating 
simultaneous pickups and deliveries, the model also 
supports regulatory compliance and improves the 
efficiency of reverse logistics chains. Theoretically, this 
study confirms that hybridizing a population-based 
metaheuristic (BA) with a powerful local search 
framework (ALNS) is a highly effective strategy for rich, 

multi-constraint VRPs, offering a valuable template for 
future algorithm designs. Furthermore, developing a 
new suite of 20 benchmark instances for the MDHF-
VRPTW-SPD provides a dataset for the research 
community, enabling rigorous comparison of future 

Table 7. Average Gap from BKS for Hybrid B-ALNS 
and State-of-the-Art Heuristics on Cordeau et al. 
Instances. 

Author Methods 
Avg. Gap 
from BKS (%)  

Improved 
BKS 

R. Yesodha 
et. al. [30] 

Firefly 
Algorithm 

 

-0.01% 
 

3/10 

J. Gao et. 
al. [28] 

Ant Colony 
Optimization 

0.00% 0/10 

M. Polacek 
et. Al. [6] 

Tabu 
Search 
 

11.82% 0/10 

S. Wang et. 
al. [45] 

ALNS -3.14% 9/10 

Proposed 
method 

Hybrid B-
ALNS 

-3.46% 10/10 
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algorithms targeting complex healthcare logistics 
challenges.  

Despite these contributions, the study has several 
limitations that should guide future work. First, the MILP 
and meta-heuristic assume deterministic travel times, 
service durations, and demand volumes. stochastic 
traffic delays, variable loading times, and emergency 
order spikes common in healthcare logistics are 
ignored and may erode solution robustness. Second, 
the fleet typology is restricted to four generic vehicle 
classes and omits driver-hour and rest-break 
regulations. Third, all computational experiments rely 
on synthetic instances adapted from Cordeau’s 
benchmark; they lack the geocoding noise, asymmetric 
street networks, and recurrent time-window violations 
observed in real dispatch scenarios, limiting the 
realism. Finally, the current Java prototype runs 
serially. It therefore cannot exploit GPU acceleration or 
distributed parallelism  required to shorten optimization 
times to the sub-minute level demanded by large-scale, 
real-time operations that directly impact patient safety.  

VI. Conclusion 

The primary purpose of this study was to address the 
Multi-Depot Heterogeneous Fleet Vehicle Routing 
Problem with Time Windows and Simultaneous Pickup 
and Delivery (MDHF-VRPTW-SPD), a challenge 
central to modern healthcare logistics. We aimed to 
model this complex problem formally and develop and 
validate a novel hybrid metaheuristic, B-ALNS, capable 
of producing high-quality, robust solutions. 

We developed a discrete Bat Algorithm hybridized 
with an Adaptive Large Neighborhood Search to 
achieve this. Computational experiments on a new 
suite of 20 benchmark instances demonstrated the 
clear superiority of the proposed B-ALNS. On average, 
the algorithm achieved a cost reduction of 1.15% 
compared to a standalone discrete Bat Algorithm and 
2.78% compared to a simple LNS. Wilcoxon signed-
rank tests confirmed These performance gains were 
statistically significant (p < 0.003 vs. BA; p < 0.0001 vs. 
LNS). Furthermore, the B-ALNS found the best-known 
solution in 85% of the test cases and consistently 
produced routes with superior balance and lower cost 
variance, all within computational times suitable for 
tactical planning. Building on the promising results of 
this study, future research will advance along two 
primary tracks. 

Building on these promising results of this study, 
future research will advance along two primary tracks. 
The first track will focus on algorithmic enhancement 
and scalability. To address the main computational 
bottleneck, we will investigate parallelizing the k-regret 
insertion phase and implementing caching 
mechanisms for move evaluations. This could 
significantly reduce runtimes for large-scale 

applications. The second track involves increasing 
model realism by extending the current deterministic 
model to incorporate stochastic elements, such as 
variable travel times and uncertain demands, as well as 
more complex operational constraints like multi-
compartment vehicles. These advancements will bring 
the model closer to the dynamic, high-stakes 
environment of daily healthcare logistics operations. 
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